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After endless mountains and rivers that leave doubt whether there is a path out,
suddenly one encounters the shade of a willow, bright flowers and a lovely village.

You Lu

First, there is a mountain, then there is no mountain, then there is.

Zen Aphorism

iii



www.manaraa.com

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor,

Professor David R. Andersen, for all his time, support and guidance on my research

work, without his input and extensive knowledge this thesis would not be possible.

I appreciate his vast knowledge and skills in many areas of physics and optics. His

insightful comments have greatly shaped my Ph.D. research. It is impossible to

complete my thesis without his guidance.

Prof. Andersen has supported me not only academically but also emotionally

throughout my Ph.D. journey. I have learned many great things from him, not only

the knowledge, but also critical & creative thinking, research attitude and passions

for the research. I am so grateful that he never made me feel incapable when I

encountered hard times. He was always willing to share his life and interest with me.

The many hourly long conversations about different topics of interesting stuff in life,

culture, history, hobbies, family and experiences made me optimistic for my life. A

couple of afternoon drinks with him were also invaluable memories too.

I would like to extend my profound gratitude to Prof. Hassan Raza for his

mentorship and discussion on the research I worked on. I would like also to thank my

thesis committee members: Prof. Michael E. Flatté, Prof. Thomas F. Boggess, Prof.
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ABSTRACT

It has become increasingly apparent that the future of next generation of

electronic devices can and will rely on graphene nanoribbons. Graphene nanoribbons

and sister structures showcase several key properties that can address the emerging

need of terahertz science and technology, and break through the many technological

limits on conventional semiconductor electronics operating in the terahertz spectrum.

In this thesis, we focus on the study of the terahertz nonlinear optical response

of metallic armchair graphene nanoribbons and sister structures using a k · p model

and time dependent perturbation theory. We find that these nanoribbons exhibit a

stronger interband optical response, and a smaller critical field strength (of the order

of 10 kV/m) than does 2D single layer graphene. We demonstrate that finite ribbon

size, spatial profile of the applied terahertz radiation field, polarization of the ap-

plied terahertz radiation, a small band gap opening, and application of a superlattice

potential are several ways to tune the strong terahertz nonlinear optical response of

metallic armchair graphene nanoribbons.

The major contributions of this thesis include: 1) developes of a simpler

method compared to other sophisticated methods of the terahertz nonlinear opti-

cal interband response of metallic armchair graphene nanoribbons; 2) extends the

method in the characterization of various quantum size effects, elliptically polarized

radiation field, small gap opening and superlattice on the terahertz optical response

of these nanoribbons; 3) The versatility of the tunability showed in the terahertz
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nonlinear response of metallic armchair nanoribbons and sister structures will help

advance the development of the nonlinear terahertz armchair graphene nanoribbon

opto-electronic and photonic technology.
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PUBLIC ABSTRACT

Over the last decade, the world has been searching for the next generation of

electronics that harvest terahertz spectrum. Conventional semiconductor electronics

have encountered difficult fundamental challenges due to the physical limits of current

technology. Graphene-based electronics are expected to be the basic building blocks

for a wealth of new device applications, i.e. high speed electronic devices, medical,

security, imaging, ultrafast wireless communications, display, automotive, wearable

devices, and energy storage.

In this thesis, a simple method is developed and shows that metallic armchair

graphene nanoribbon and its sister structures exhibit a strong terahertz nonlinear

response and great tunability. Our analysis provides new advances in the fundamental

understanding of metallic armchair graphene nanoribbons. Our result sets the stage

for the development of the nonlinear terahertz armchair nanoribbon opto-electronic

and photonic technology.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

There has been a significant paradigm shift in the world of conventional semi-

conductor electronics with the foreseeable failure of Moore’s Law. Device size limit,

power/heat consumption, as well as quantum interference all serve as fundamental

challenges that are difficult to overcome for the conventional semiconductor electron-

ics. New horizons have opened with the emergence of graphene-based disruptive

technologies in the last decade. Graphene based materials have many unique phys-

ical, electrical, optical, chemical, thermal biological and mechanical properties (see

Fig. 1.1) when compared to conventional semiconductors [1,2]. Graphene is expected

to have a major impact in various fields, serving as the basic building block for a

wealth of new device applications (see Fig. 1.2), which cannot (or may be difficult to)

be achieved with the conventional electronics [1].

Figure 1.1: Graphene properties and its related application areas. This figure is

obtained from [1].
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Figure 1.2: Graphene based platform for new technologies and applications, with

disruptive, not incremental advances. This figure is obtained from [1].

Herbert Kroemer, one of the Laureates of the 2010 Nobel Prize in Physics,

proposed the “Lemma of New Technology”: “The principal applications of any suf-

ficiently new and innovative technology always have been and will continue to be

applications created by that technology” [3]. Rapidly-advancing research and devel-

2
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opment activities in the last decade have already shown graphene as a very promising

candidate for the basic building block of the next generation of electronics, offering

great opportunities and benefits to science, technology and society as a whole [1].

Thus graphene is no exception to this lemma, and becomes disruptive in terms of

offering not incremental, but orders of magnitude improvements when compared to

the conventional electronics [1]. Graphene has many potential novel applications,

including but not limited to, charge-based high speed electronic devices, spintronic

devices, and energy storage devices (e.g. advanced batteries and supercapacitors) [1].

Fig. 1.3 shows the wide range of applications of graphene [1].

Figure 1.3: Overview of Applications of Graphene, ranging from conductive ink to

chemical sensors, light emitting devices, composites, energy, touch panels and high

frequency electronics. This figure is obtained from [1].

3



www.manaraa.com

The International Technology Roadmap for Semiconductors considers graphene

one of the promising candidates for post-Si conventional electronics [1]. The great

potential of graphene is demonstrated by the soaring number of academic publica-

tions, patents and industrial activities in the last decade [1]. Progress in the state of

art of the production of various graphene structures has been impressive [1, 4, 5].

1.2 Tunability of the terahertz nonlinear response of graphene

nanoribbon structures

The terahertz (THz) spectrum region has been fairly unexploited using conven-

tional semiconductors, especially given the difficulty in identifying the THz photon,

which is usually below the thermal energy. The THz field has many promising appli-

cations due to its non-ionizing and low-energy characteristics, e.g. medical, security,

imaging, ultrafast wireless communications, display, automotive, wearable devices

and energy storage [1]. Furthermore, active devices at THz working frequencies are

vital to the conversion of high frequency radiation (particularly solar THz radiation

spectrum), which can lead to a self-powered behavior of devices [1]. Graphene has a

linear dispersion, a constant Fermi velocity, easy tunability and the potential for band

gap engineering [2, 6–8], thus graphene exhibits decisive advantage over all available

conventional semiconductors in the THz spectral region to harvest the THz operation

frequencies [1].

Fig. 1.4 shows the timeline of possible device applications and functional device

prototypes. It is expected that there will be breakthroughs in high-speed graphene

4
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nanoribbon THz optoelectronics [1]. Due to the linear band dispersion shown in

metallic armchair graphene nanoribbons in the THz spectrum, it is therefore possible

to generate charge carriers in these nanoribbons by optically stimulated direct inter-

band transitions over the entire THz spectrum, a functionality unmatched by any

known material [1, 9, 10].

Nonlinear effects can be used to broaden the already wide spectral range of

graphene and provide a larger response. Nonlinear frequency conversion (e.g. higher

harmonic generation, parametric oscillation and amplification, four-wave mixing, and

super-continuum generation) is also useful to expand the working spectral region [1].

In particular, the development and optimization of the performance of THz graphene

nanoribbon devices will contribute greatly to the technological progress in graphene.

Figure 1.4: Graphene device applications timeline. The rectangles in the figure indi-

cate the timeframe when functional device prototypes could be expected. This figure

is obtained from [1].
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The state of art progress toward precision atomic-scale graphene nanoribbon nanode-

vices will make these nanodevices a strong platform in the single-molecular electronics

paradigm [11], and advance Boolean information processing [1]. As graphene nanorib-

bons allow quantum qubits due to the spin and valley [12–15], these might add an

additional degree freedom in the future design of highly-integrated molecular Boolean

logic circuit and quantum computing [1, 8, 16–21].

In most of the existing semiconductor technologies, the typical length-scale of

THz devices is large [1]. However, graphene THz devices can be achieved at smaller

length-scales. A typical linear THz device size is of the order of several µm, so

one needs to consider the finite size effect of graphene nanoribbons too. With THz

devices of the µm scale, one needs to consider the discrete electronic spectrum due to

quantization, charge quantization and other effects caused by finite size [1]. As thin

graphene nanoribbons may be treated as quasi-1D quantum wire [22], this requires

an understanding of the nonlinear optical properties of the response of graphene

nanoribbons due to the reduced dimensionality [1].

Band gaps can be tuned via different edge terminations, electric, magnetic

modulation, chiral vector potential (e.g. kink, twisting), etc. [23–31]. The prospect of

band gap engineering in graphene nanoribbon leads to the long term goal of producing

graphene nanoribbons on demand, and achieves top-down control of graphene nano-

structuring [1]. The engineering of graphene nanoribbon bandgaps lead to the further

optimization of the THz response of graphene, e.g. small gap openings can induce

second harmonic generation, and show larger nonlinearities in the linear forbidden

6
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excitation region [8, 32–34].

Active control of THz polarization spectroscopy is vital for optical material

characterization and various applications in communication theory. Unlike conven-

tional semiconductors, Graphene nanoribbons can be easily tuned electrically in the

THz range. Therefore, THz spectroscopy of graphene nanoribbons can lead to ultra-

thin THz polarization modulators [1].

Another way to modulate and tune graphene nanoribbons is by means of su-

perlattice. A superlattice is a large-scale periodic patterning of graphene, which can

change the properties and THz response of the structure [1,35]. The manufacture and

characterization of graphene nanoribbon superlattices is a challenging yet promising

direction for device applications. The versatility of the tunability of graphene nanorib-

bons means that these structures may enable novel nonlinear optical, electronic and

photonic devices working in a wide range of frequencies, including THz, with ex-

tremely high speed, high response, low driving voltage, low power consumption and

compact footprints [1].

1.3 Overview of thesis

This thesis contains eight chapters and two appendices. The following is an

overview of the remaining contents:

1. Chapter 2 provides the background for the electronic properties of graphene and

armchair graphene nanoribbons. In it, the k · p Hamiltonian is derived from

the tight-binding method, and is used to obtain the Hamiltonian of various

7
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graphene structures. It also introduces briefly the N-photon coupling approach

adopted in this thesis.

2. Chapter 3 serves as a basis of the computation of the THz nonlinear direct inter-

band transition of infinitely long metallic armchair graphene nanoribbons with

an applied linearly polarized electric field under relaxation free approximation.

3. Chapter 4 studies the effects of finite ribbon size, finite applied field spatial

profile, and the scattering mechanism on the THz nonlinear response of metallic

armchair graphene nanoribbons with an applied linearly polarized electric field.

4. Chapter 5 shows the calculation of the third order THz nonlinear response with

an applied elliptical polarized electric field.

5. Chapter 6 demonstrates how small band gap openings affect the third order

THz nonlinear response with an applied linearly polarized electric field.

6. Chapter 7 provides a theoretical calculation of the third order THz nonlinear

response with an applied elliptical polarized electric field of a metallic armchair

nanoribbon superlattice structure

7. Chapter 8 summarizes the conclusions and provide the outlooks for the devel-

opment of armchair graphene nanoribbons based device applications.

8. The appendices provide some useful details for the derivation performed in

Chapter 3.

8
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CHAPTER 2
ELECTRONIC PROPERTIES OF GRAPHENE AND ARMCHAIR

GRAPHENE NANORIBBON

2.1 Electronic properties of 2D single layer graphene

We use the tight-binding approximation up to the nearest neighbor atom to

derive the electron band structure of 2D single layer graphene, in the massless Dirac

equation (k · p approximation), which is valid at low energies.

2.1.1 Tight binding approximation in 2D single layer graphene

Graphene is a 2D hexagonal lattice (honeycomb) structure of covalently bonded

carbon atoms. The carbon atom has 6 electrons in the nucleus (1s22s22p2). The na-

ture of the chemical bonds of carbon atom determines the graphene structure. In

graphene, electrons occupying the external orbitals of the carbon nucleus 2s22p2, are

mixed to the sp2 hybridization of the 2s, 2px and 2py. The fourth valence electron

shells are half filled in the 2pz orbital, which is orthogonal to the graphene sheet. The

overlap of these half filled 2pz orbitals form the ±π electrons. As a result, the elec-

tronic properties of graphene are determined by the delocalized π electrons [2,6]. As

mentioned above, the graphene structure is determined by a honeycomb hexagonal

lattice with two atoms in a unit cell (see Fig. 2.1). We may choose the basis of the

unit cell in real space as

a1 = a0 (1, 0) , a2 = a0

(
−1

2
,

√
3

2

)
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Figure 2.1: a) Graphene honeycomb lattice structure. Basis vectors in the unit cell

are a1 and a2, A and B atoms of the unit cell. b) First Brillouin zone (BZ). The Dirac

points K and K’ are described by the massless Dirac equation, and are the vertex

points of the BZ.

and the vectors connecting the nearest neighbor atoms are given by:

b1 = acc (1, 0) , b2 = acc

(
−
√

3

2
,−1

2

)
, b3 = acc

(√
3

2
,−1

2

)

where the lattice constants acc = a0/
√

3 ≃ 1.42 Å.

The basis set for the reciprocal lattice is:

c1 =
2π

a0

(
1,

1√
3

)
, c2 =

2π

a0

(
0,

2√
3

)

The first BZ is a hexagon (Fig. 2.1b), where the vertex points are called the Dirac

points. There are two inequivalent Dirac points per BZ, traditionally labeled K and

K’, with the vector from the center Γ of the BZ :

K =
2π

a

(
2

3
, 0

)
, K′ =

2π

a

(
1

3
,

1√
3

)
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The electronic properties of graphene are well-described by the tight binding ap-

proximation of the ±π bonds [2, 6]. Let us define the creation (annihilation) opera-

tor, c†R (cR) that creates (annihilates) a free pz orbital electron at the lattice point

R = xx̂ + yŷ, e.g., |pz(R)⟩ = c†R |0⟩. The hopping parameter γ0 ≈ 2.8 eV represents

the coupling between nearest neighbor pz orbitals. Thus the tight binding Hamilto-

nian for electron energies near the pz orbital in graphene is [6]:

H = −γ0
∑
RA,bj

c†RA
− bj cRB

− γ0
∑
RB,bj

c†RB
− bj cRB

(2.1)

where the sum contains the sum of two sublattices RA = n1a1 + n2a2 + bj and

RB = n1a1 + n2a2, with n1, n2 ∈ Z. If we set the energy of the pz orbital to zero,

eigenstates of the Hamiltonian (2.1) can be expanded as a Bloch function [2, 6]:

H =
1√
N

∑
RA

eik·RAc†RA
fA(k) +

1√
N

∑
RB

eik·RBc†RB
fB(k)Z (2.2)

where the magnitude of the complex phase term |Z| = 1. After some algebra, the

Hamiltonian (2.1) becomes:

H = −γ0
∑
k

(∑
j

Z∗eik·bj ·B†
kAk + c.c.

)
(2.3)

where Ak(Bk) are the Fourier transform of cRA
(cRB

). Eq. (2.3) contains an important

energy weighting function, T (k):

T (k) = −γ0
∑
k

∑
j

Ze−ik·bj

As a result, the Hamiltonian (2.3) can be expanded in matrix form:

H =
∑
k

(
A†

k B†
k

)( 0 T (k)
T ∗(k) 0

)(
Ak

Bk

)
(2.4)
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With the Bloch state satisfying c†k = fA(k)A†
k + fB(k)B†

k, the energy dispersion can

be obtained by the following eigenvalue relation:(
0 T (k)

T ∗(k) 0

)(
fA(k)
fB(k)

)
= E(k)

(
fA(k)
fB(k)

)
(2.5)

The energy dispersion is obtained by setting the determinant:∣∣∣∣−E(k) T (k)
T ∗(k) −E(k)

∣∣∣∣ = 0 (2.6)

The solution of Eq. (2.6) determines the energy dispersion [2,6] of the band structure

in 2D single layer graphene (SLG):

ϵ(k) = s
√
T (k)T ∗(k) = sγ0

√√√√1 + 4 cos

(
akx
2

)
cos

(
aky

√
3

2

)
+ 4 cos2

(
akx
2

)
(2.7)

and the eigenstate:

ξ(k) =
1√
2

(
1

e−iϕ(k)

)
(2.8)

where ϕ(k) = arg[T (k)], the complex argument of T (k), and s = ±1 the conduction-

valence band index. Fig. 2.2 shows the energy dispersion of 2D intrinsic SLG. We

note the special behavior of the conduction and valence bands near the Dirac points

K and K′. The conduction band and valence band cones touch precisely at the Dirac

points. Thus, 2D intrinsic SLG is a zero gap semiconductor in general.

2.1.2 Dirac Continuum model under k · p approximation

We now make a Taylor expansion near the K and K′ points up to the first

order, and shift the coordinate with respect to the Dirac points, namely k → k + K

for |k| ≪ |K| and k′ → k′+K′ for |k′| ≪ |K′|. Now T (k) can be expanded as follows:

T (k) = −γ0
∑
j

Ze−i(k+K)·bj ≈ −γ0
∑
j

Ze−iK·bj (1 − ik · bj) (2.9)

12
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Figure 2.2: Energy dispersion of 2D intrinsic SLG. Left: Band structure (in units of

Γ0 = 2.8 eV) Right: Band Structure of the Dirac Cones. This figure is from [6].

After some algebra, the sums in Eq. (2.9) become:

∑
j

e−iK·bj = 0

∑
j

bje
−iK·bj = e−i

2π
3

√
3

2
a (ix̂+ ŷ)

With the phase term Z = e−iπ/3 in Eq. (2.2), we obtain the expression for T (k)

and the effective Hamiltonian HK in the vicinity of the Dirac point K, or the Dirac

continuum model in the k · p approximation:

T (k) = γ0ik ·
∑
j

bjZe
−iK·bj =

√
3

2
aγ0 (kx − iky) (2.10)

HK =

√
3

2
aγ0

(
0 kx − iky

kx + iky 0

)
(2.11)
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It is convenient to introduce the Fermi velocity vF =
√

3aγ0/(2~) ≈ 1 × 106 m/s [2,6].

In this case, the Hamiltonian (2.11) for K(K′) valley reduces to:

HK = ~vFσ · k (2.12)

HK′ = ~vFσ · k′ (2.13)

where k(k′) = ±x̂kx + ŷky, σ = x̂σx + ŷσy, and:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)

are Pauli spin matrices.

With this Dirac continuum model in the k · p approximation, low energy

graphene carriers near the vicinity of Dirac points K behave exactly like massless

Dirac fermions with spin 1/2, or the pseudospin of graphene. The energy dispersion

for HK and the wavefunctions of HK are obtained by solving the eigenvalue equation

HKψk = ϵ(k)ψk:

ϵ(k) = s~vF |k| = s~vF
√
k2x + k2y (2.14)

ψk(r) = ⟨r|sk⟩ =
1√
2

(
s

eiθ(k)

)
(2.15)

with the isospin angle tan [θ(k)] = ky/kx. Similarly, massless Dirac fermions near K′

are described by HK′ = ~vFσ · k′, with k′ = x̂k′x + ŷk′y = −x̂kx + ŷky. As the energy

dispersion of HK′ has the same expression for the K valley (see Fig. 2.2), so we have

another degree freedom like the electron spin gs = 2, the valley degeneracy gv = 2 for

the Dirac fermions [2, 6, 36].
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2.2 Mesoscopics in graphene: Dirac points in graphene ribbons

Thin graphene nanoribbons (width sub-20 nm) may be treated as quasi 1D

quantum wire [22]. Due to the small scale of graphene nanoribbon based structures

and devices, quantum mechanics is known to affect the mesoscopic properties of such

systems profoundly. These mesoscopic quantum effects in graphene nanoribbon based

systems make tehm an attractive candidate for fast and compact electronic and optical

devices [37].

The basic mesoscopic physics of how small size affects the electronic proper-

ties of semiconductors are well studied [38]. The electronic properties of conventional

mesoscopic semiconductors are well described by the simplest model, the Schrödinger

equation for electrons moving inside the semiconductors with an appropriate effec-

tive mass. Such a conventional model treats electrons as non-interacting particles,

confined in the region defined by some effective potential due to the structure of the

semiconductors, rather than free electrons in a vacuum [37].

However, electrons in graphene are not accounted for within this simple con-

ventional model [37]. As shown in Section 2.1.2, the low energy electrons in the

graphene honeycomb lattice structures are governed by the massless Dirac equation.

The wavefunction, Eq. (2.15) has two components, acting as an effective spinor, and

exhibiting pseudospin. The direction of the spinor changes with the wavefunction

and the Berry’s phase associated with it. These effects lead to quantum interference

effects, completely different from electrons in conventional semiconductor systems. In

the low energy Dirac continuum model in the k · p approximation, when inter and
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intravalley scattering is negligible, these unusual electronic and quantum effects for

the Dirac fermions associated with the quasiparticle and pseudospin nature of the

wavefunctions become evident [37].

We begin our discussion of the mesoscopics of the Dirac points in graphene

nanoribbons with the k · p approximation. As we are interested in the low-energy

states, the electronic spectra and the wavefunctions produced by microscopic tight-

binding calculations for graphene nanoribbons [39, 40] may be well described using

the simpler Dirac equation under k · p approximation [41, 42]. In this approach,

wavefunctions are expressed in terms of envelope functions ψK(r) = [ψA(r), ψB(r)]

and ψK′(r) = [ψ′
A(r), ψ′

B(r)] for states near the K and K′ points, respectively. The

envelope functions may be combined into a four-vector ψ = (ψA, ψB, ψ
′
A, ψ

′
B)T , which

satisfies the envelope Dirac equation [41,42] (when the inter and intravalley scattering

is negligible) HΨ = ϵΨ, with

H = ~vF


0 kx − iky 0 0

kx + iky 0 0 0
0 0 0 −kx − iky
0 0 −kx + iky 0

 (2.16)

k correspondes to the separation in the reciprocal space from the K(K′) point in the

upper left (lower right) block of the Hamiltonian (2.16).

It should be noted that this k · p approximation description of graphene nanorib-

bon carriers is appropriate only at low energies |ϵ| ≪ γ0, which is of the order of 2 eV.

For Fermi energies EF greater than the scale of the optical phonon energy 0.2 eV, one

needs to use a more basic tight-binding description. For EF ≪ 0.2 eV, the description

in terms of the block Dirac Hamiltonian should work relatively well [10, 37].
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2.2.1 Armchair graphene nanoribbons

In this section, we discuss consequences of the quasiparticle and pseudospin

nature of the graphene Dirac fermions in the mesoscopic setting, particularly for

metallic armchair graphene nanoribbons in the low energy regime. The geometry

for an armchair graphene nanoribbon is illustrated on the top and bottom edges of

Fig. 2.3, along with the unit cell denoted by the vertical rectangle used in the corre-

sponding tight-binding calculations. The width of the armchair graphene nanoribbon,

is related to the number of atoms along the zigzag edge N , or Lx = Wac = Na0/2.

Figure 2.3: The lattice structure of graphene nanoribbon. The lattice is constructed

from the vector n1a+n2b, with n1, n2 ∈ Z. Atoms enclosed in the vertical(horizontal)

rectangle represent the unit cell of armchair(zigzag) graphene nanoribbons. The width

of the unit cell of armchair(zigzag) nanoribbons, Wac(Wzz), as function of the number

of atoms along the zigzag(armchair) edge, N , is also indicated.
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The electronic spectra of armchair graphene nanoribbons strongly depend on

their width Lx along the zigzag edge. Fig. 2.4 illustrates three examples of the band

structure for armchair graphene nanoribbons of different width using the pz orbital

tight-binding up to the first nearest neighbors (pzTB) calculation [43].
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Figure 2.4: pzTB band structure of ideal armchair graphene nanoribbons with various

widths (a) n = 6, (b) n = 7, and (c) n = 8 respectively. The value of the subband

index in each figure is a convention adopted in [43]. This figure is obtained from [43].
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We can see that in Fig. 2.4c, there is a Dirac point, leading to the metallic behavior for

intrinsic nanoribbons whereas Fig. 2.4a and Fig. 2.4b are band insulators. In general,

armchair graphene nanoribbons of N = 3M − 1 atoms wide along the zigzag edge,

with M odd, are metallic, whereas all the other cases are semiconductors in the k · p

approximation [41–43]. The energy of the confined states also behaves in a quantized

discontinuous way, and is strongly dependent on the ribbon width Lx [37, 41–43].

This separation in energy as a function of the ribbon width Lx may be un-

derstood in terms of the quantization of kx of the Dirac Hamiltonian (2.16) with the

correct boundary conditions. In Fig. 2.3, the termination along armchair edges con-

sists of a line of A−B (A′−B′) dimers. It is natural to admix valleys, and require that

the wavefunction amplitude vanish on both sublattices [41] at x = 0 and x = Lx+ a0
2

:

ϕµ(x = 0) = ϕ′
µ(x = 0) (2.17)

ϕµ(x = Lx +
a0
2

) = ϕ′
µ(x = Lx +

a0
2

)ei∆K(Lx+
a0
2
) (2.18)

where µ = A, B and ∆K = 4π
3a0

. As a result, solutions of the Dirac equation are

essentially plane waves of the form:

ϕB(x) = eiknx and ϕ′
B(x) = e−iknx (2.19)

with boundary condition e2ikn(Lx+
a0
2
) = ei∆K(Lx+

a0
2
) derived from Eq. (2.18), the al-

lowed values of kn for armchair graphene nanoribbons are [41,42]:

kn =
nπ

2Lx + a0
+

2π

3a0
(2.20)

The admixing of different valley states means that the wavefunction will oscillate

with period 2π/∆K due to the boundary conditions [41, 43]. Such behavior can be
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observed in Fig. 2.5, which illustrates the local density states in the lowest conduction

or valence band at kn = 0 from the pzTB calculation with various width. The short

oscillation in the local density of states has exactly the period expected for the valley

mixing due to the boundary conditions [37,41,43].
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Figure 2.5: Local density of the states calculated using k · p and pzTB in the lowest

conduction or valence band at kn = 0 for armchair GNRs with various widths, (a)

n = 50, (b) n = 51, and (c) n = 52, respectively. This figure is obtained from [43].
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As a result, the Brey-Fertig wavefunction for armchair graphene nanoribbons

is [41,42]:

ψn,s =
eikyy

2
√
LxLy


e-iθkn,ky eiknx

seiknx

−e-iθkn,ky e-iknx

se-iknx

 (2.21)

where the direction of the isospin of the state is θkn,ky = tan−1(kn/ky) and the energy

ϵ(k) = s~
√
k2n + k2y. Thus for a width of the form Lx = 3M−1

2
a0 with M odd, the

allowed values of kn = 2π
3a0

M+n
M

create doubly-degenerate states for n ̸= −M and when

ky → 0, the existence of a zero energy state indicates that the conduction and valence

band touch at the Dirac points. However, we notice that this k · p model only predict

the metallic acGNRs with N = 2, 8, 14, · · · . In fact, metallic acGNRs are all metallic

for the N = 5, 11, 14, · · · case as well (see Fig. 2.6).

Figure 2.6: pzTB of ideal metallic armchair graphene nanoribbons (a) n = 2, (b)

n = 5, (c) n = 8, and (d) n = 11 respectively. This figure is obtained from [39].
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Armchair graphene nanoribbons with N ̸= 3M − 1, with M integers are semi-

conducting. These semi-conducting armchair graphene nanoribbons have nondegen-

erate states and do not have Dirac point (zero energy mode).

Lastly, we should mention the chirality in armchair graphene nanoribbons

briefly. In general, unlike zigzag graphene nanoribbons, the lowest subbands in semi-

conducting armchair graphene nanoribbons do not show chirality due to the admixing

of valley states [37]. However, states in the lowest subbands (kn = 0) for metallic

armchair graphene nanoribbons do show a chirality. The appearance of the chiral-

ity in metallic armchair graphene nanoribbons comes from the symmetry from the

interchange of the sublattice and valley indices of the Dirac fermions [37].

2.2.2 Nearly metallic armchair graphene nanoribbons

A bandgap can be opened in 2D SLG if we introduce an asymmetry into

the graphene sublattices. This generates an electron-hole asymmetry in the band

structure. All experimental reports on the syntheses of high quality GNR show that

they have an energy gap, including acGNR that are predicted to be of metallic type

under pzTB and k · p approximations [5, 44–49] (in what follows, we label gapped

nearly-metallic acGNR as m∗GNR). The energy gap in these m∗GNR is inversely

proportional to their width [44–47]. Several theoretical models have predicted the

energy gap based on different edge terminations and calculation methods [23–29].

If we define the energy gap Egap = 2~Ωg = 2~vFk∆ and following the k · p

model for gapped 2D SLG [32,33], and GNR [41,42], the Hamiltonian for m∗GNR in
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the absence of intravalley and intervalley scattering may be written:

H = ~vF


−k∆ kn − iky 0 0

kn + iky k∆ 0 0
0 0 −k∆ −kn − iky
0 0 −kn + iky k∆

 (2.22)

where kn = 2π
3a0

M+n
M

, M the number of carton atoms in the x̂ direction. For k∆ → 0,

Hamiltonian (2.22) reduces to the ideally metallic acGNR case.

2.2.3 Metallic armchair graphene nanoribbon superlattice

The electronic structure of armchair graphene nanoribbon structures may be

manipulated by an applied external periodic potential, which allows one to engineer

the band structures of such systems. The manipulation of the periodic potential to

tailor the conduction properties of the system opens many possibilities for electronic

devices [37].

A superlattice, which is essentially a 1D periodic series of barriers and wells,

has a profound effect on the electronic transport properties in graphene. Electron

motion along the superlattice axis (parallel to the superlattice wave vector kλ in

the vector space) is the same as the case in the absence of the periodic potential.

The physical picture of such an effect is governed by the Klein paradox [37]. When

massless Dirac fermions are incident normally upon a sharp potential barrier, the

Dirac fermions are transmitted through the barrier rather than reflected as the case

for an ordinary Schrödinger particle. This dramatic effect is known as the Klein

paradox [2, 6]. One simple explanation for such phenomena is that the reflection

of a Dirac fermion requires a 180◦ rotation of the spinor wavefunction, yielding a

state completely perpendicular to the incident one, so that there is no amplitude for
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backscattering due to the nature of the spinor structure of the wavefunction.

However, for electrons moving perpendicular to the superlattice axis, the veloc-

ity of the electron is degraded, or an anisotropy in the corresponding electron velocity

around the Dirac point emerges, which may collimate the flow of electrons [50]. In

principle, for a strong enough superlattice or superlattice with a high enough spatial

frequency (see Ref. [35]), the electron velocity can be even inverted perpendicular to

the superlattice axis. As a result, new Dirac points are generated at zero energy in

the band structure and we shall expect that there is a clear signature in transport for

the emergence of these new Dirac points [35,37].

We note that, if new Dirac points emerges from the original Dirac point, the

electric response is not quantitatively described by the k · p approximation when

compared to tight-binding calculations [35]. If there are no new Dirac points intro-

duced by the superlattice, in the limit of Ly ≫ Lx, with Ly the length, Lx the width

and the superlattice axis is in the ŷ direction, the electron moves diffusively [35, 37]

perpendicular to the superlattice axis. In the k · p approximation, this may be in-

terpreted as the introduction of a group velocity anisotropy parameter λ, so that the

effective group velocity in x̂ direction is vx = λvF . Thus the low energy Hamilto-

nian [35, 41, 42, 51] for armchair graphene nanoribbon superlattice in the absence of

intravalley and intervalley scattering may be expressed as:

H = ~vF


0 λkn − iky 0 0

λkn + iky 0 0 0
0 0 0 −λkn − iky
0 0 −λkn + iky 0

 (2.23)
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2.3 Overview of Method

In this Thesis, the THz nonlinear direct interband optical properties of arm-

chair graphene nanoribbons are derived. The interband optical response is obtained

by constructing the wavefunction using the Floquet theorem. The Fourier expansion

of the wavefunction will leads us to an N−photon coupling mechanism under time

dependent perturbation theory (TDPT) [52].

With the presence of an external electric field E(t) = e−iωt (x̂Ex + ŷEy), in

the Coulomb gauge for a constant scalar potential, we have E(t) = −∂tA(t). If the

electric field is switched on adiabatically at t0 → −∞, the corresponding magnetic

vector potential is written [10,53,54]:

A(t) =
E(t)

iω
=
e−iωt

iω
(x̂Ex + ŷEy) (2.24)

Full details of the derivation of the vector potential can be seen in Appendix A.

Following the general procedure of Ref. [10, 52], due to the Dirac nature of

the Hamiltonian H0(k), with a smooth external external field U(r), the perturbed

Hamiltonian may be written as:

H(k) = H0(k) +Hint = H0 (k + qk/~) + U(r)σ0 ⊗ σ0 (2.25)

where σ0 is the 2×2 identity matrix, and Hint = H (qk/~). Eq. (2.25) implies that the

external field U(r) does not couple the K and K′ valleys, provided that the external

field U(r) varies smoothly on the scale of the lattice constant a0 [36]. According to

the Floquet theorem, the solution of the Hamiltonian (2.25), in the absence of the
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external electromagnetic field, is of the form [32,52,55–58]:

Ψ(r, t;k) =
∞∑
n=0

ϕn(k)ei2πk·re−inωte−iϵt/~ (2.26)

with the requirement that when A → 0, Ψ(r, t;k) should be a solution of the Hamil-

tonian H0 [32,52,55–57]. The spinor ϕn(k) represents the Dirac fermion-photon cou-

pling strength and governs the multiple-photon process in the direct interband tran-

sitions [10, 32, 51, 52, 55, 57]. The spinor can be obtained by solving the Schrödinger

equation:

i~
∂Ψ(r, t;k)

∂t
= H(k)Ψ(r, t;k) (2.27)

The Hamiltonian has k dependent σ · k off-diagonal terms, which will gives rise to

a set of recursive coupled equations, that can be represented in terms of a transfer

matrix:

ϕn(k) = Tn (ϕn−1(k),A)ϕn−1(k) (2.28)

Thus we can solve for ϕn(k) up to any arbitrary order.

Let us find the local current density conductivity and local current density

operators for Dirac fermions. The particle density for a single Dirac fermion density

is simply ρ = |Ψ(r, t;k)|2. Thus the charge density operator is:

ρop(r) = δ(r− rop) (2.29)

After applying the equation of continuity:

q
∂ρ

∂t
+ ∇ · j = 0 (2.30)
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joining with the Schrödinger equation:

i~
∂Ψ(r, t;k)

∂t
= H(k)Ψ(r, t;k) (2.31)

we obtain the local (single-particle) current density for Dirac fermions:

j(k, t) = x̂jx(k, t) + ŷjy(k, t) (2.32)

with the local current density Fourier component defined as:

jν(k, t) = qΨ(r, t;k)†
∂H(k)

~∂kν
Ψ(r, t;k) (2.33)

where ν = x, y indicates the component of the induced current.

If we define the group velocity operator v = ∇kH(k)/~, we have,

⟨Ψ(r, t;k)|v|Ψ(r, t;k)⟩ (2.34)

≡ svF

[
⟨ΨK(r, t;k)

∣∣∣∣ k|k|
∣∣∣∣ΨK(r, t;k)⟩ + ⟨ΨK′(r, t;k)

∣∣∣∣ k′

|k|

∣∣∣∣ΨK′(r, t;k)⟩
]

where s represents the state’s chirality. Eq. (2.34) indicates that for a given k state,

the group velocity operator v is parallel to the isospin in the K(K′) valley. As the

chirality in metallic armchair graphene nanoribbons only exists for the metallic lowest

bands [37] where kn = 0, so the group velocity and isospin are parallel/antiparallel to

k for the valence/conduction states in metallic armchair graphene nanoribbons only

for the lowest bands (kn = 0), respectively [36, 37]. The fact that the isospin of the

wavefunciton is tied to the propagation direction has important implications for the

transport properties, e.g. , the absence of backscattering [36,37,59].

Next, we comment on the quantum-relativistic analog of the local current

density. In general, the valley degree of freedom corresponds to the opposite sign of the
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two subblocks, which have left-handed or right-handed circular polarization [36]. In

quasi-1D graphene ribbon structures, due to the block nature of the k · p Hamiltonian,

the relative sign of the two subblocks can be changed via a unitary transformation,

hence a distinction between the left or right handedness of the valley degree freedom

cannot be made. Low energy electrons in armchair graphene nanoribbons are called

“chiral” because the direction of motion is tied to the direction of the isospin. As

the local current operator j(k, t) is proportional to the expectation value of the group

velocity operator v, so low energy electrons moving in the x̂ or ŷ direction always have

an isospin pointing in the ŷ direction for metallic armchair graphene nanoribbon. As

this isospin is 1D, there is no analog of circular polarization and therefore no left or

right handedness in metallic armchair graphene nanoribbons [36].

The local current density jν(k, t) conserves charge current density [54, 60, 61]

with an applied vector potential A. The total optical current density component is:

Jν(k, t) = e ⟨Ψ(r, t;k) |v|Ψ(r, t;k)⟩ · ν̂

= e
∑
k

Ψ(r, t;k)†
∂H

~∂kν
Ψ(r, t;k) (2.35)

= e
∑
k

[
ϕ0(k)† + ϕ1(k)† + ϕ2(k)† + · · ·

] ∂H
~∂kν

[ϕ0(k) + ϕ1(k) + ϕ2(k) + · · · ]

with ν = x, y indicating current component in the ν̂ direction. Thus the terms ∝ |E|n

represents the n-th order direct interband nonlinear optical response.
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CHAPTER 3
FIRST PRINCIPLES STUDY OF THE TERAHERTZ THIRD ORDER

NONLINEAR RESPONSE OF
METALLIC ARMCHAIR GRAPHENE NANORIBBONS

1In this chapter, we compute the terahertz third-order nonlinear conductance

of metallic armchair graphene nanoribbons using time-dependent perturbation theory.

Significant enhancement of the intrinsic third-order conductance over the result for

intrinsic 2D single-layer graphene is observed over a wide range of temperatures.

We also investigate the nonlinear response of extrinsic metallic acGNR with |EF | ≪

200 meV. We find that the third-order conductance exhibits a strong Fermi level

dependence at low temperatures. A third-order critical field strength of between ∼ 1

and 5 kV/m is computed for the Kerr conductance as a function of temperature.

For the third-harmonic conductance, the minimum critical field is computed to be

∼ 5 kV/m.

3.1 Introduction

Graphene, a monolayer of carbon atoms arranged in a 2D honeycomb lattice,

has excellent electronic, mechanical, thermal and optoelectronic properties. [2] The

spectrum of graphene is described by the massless Dirac equation. Due to the many

unique properties of graphene, it is considered a promising material for electronic

device applications.

In the terahertz (THz) to far-infrared (FIR) spectral regime, the optical con-

1This chapter was published in Phy. Rev. B. 93, 235430 (2016) [10].
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ductance of graphene based systems has attracted much interest due to the ongoing

search for viable THz devices. Graphene is traditionally a poor conductor in the THz

to FIR spectrum, with universal conductivity σ0 = e2/(4~) leading to an absorption

of only 2.3% at normal incidence per graphene layer. [62] However, graphene has a

number of features that make it an attractive nonlinear system to study. [8, 16–18]

These include a tunable Fermi level, and more importantly a linear dispersion rela-

tion near the Dirac point. [6,7] This linear dispersion and the accompanying constant

Fermi velocity vF have led to the theoretical prediction of the generation of higher-

order harmonics in graphene. [16] Mikhailov and Ziegler have developed a quasi clas-

sical kinetic theory and a quantum theory on the third order nonlinear process in

graphene. [63,64] Wright et.al. [52] adopted a time dependent perturbation theory to

analyse the linear and third order nonlinear optical response of intrinsic 2D single layer

graphene (2D SLG) with an applied electric field of approximately 100 kV/m, which

indicates that the strong nonlinear conductance makes graphene a potential candidate

for THz photonic and optoelectronic devices. Ang et.al. [32,57] investigated the non-

linear optical conductivity of bilayer graphene (BLG), semihydrogenated graphene

(SHG) and Kronig-Penney (KP) graphene superlattices. Gullans et.al. [65] studied

the single photon nonlinear mechanism in graphene nanostructures and showed strong

confinement of plasmons and large intrinsic nonlinearity in graphene nanostructures

led to significant electric field enhancement. Recently, Mikhailov et.al. [66–68], Cheng

et.al. [34,69–72] and Morimoto et.al. [73] proposed quantum theories of the third-order

nonlinear response with an uniform external electric field in 2D SLG independently.
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This work [34, 66, 68, 69, 71, 73] studies the relationship of the Fermi energy with the

direct interband transition, which confirms the resonant frequencies for the third-

harmonic conductance which appeared in Refs. [52, 55], and the missing resonant

frequencies for the Kerr conductance in Refs. [52, 55] as we perform the calculations

of Refs. [52, 55].

Hendry et.al. [17] first report measurement of the coherent nonlinear opti-

cal response of single and few-layer graphene using four-wave mixing. Their results

experimentally demonstrate that graphene structures exhibits a strong nonlinear op-

tical response in the NIR spectral region. Harmonic generation, frequency mixing,

optical rectification, linear and circular photogalvanic effect, photon drag effect, pho-

toconductivity, coherently controlled ballistic charge currents, etc. in graphene are

currently the subject of intense research, and have already found a number of ap-

plications. [8] Kumar et.al. [19] found third harmonic generation in graphene and

multi-layer graphite films grown by exfoliation. They found the nonlinear emission

frequency matched well with the theoretical prediction and deducted an effective

third order susceptibility on the order of 100 µm2/kV2. Maeng et.al. [20] measured

the nonlinear conductivity of gate controlled graphene grown by CVD. Their work

show nonlinear conductance of graphene can be efficient controlled via applied gate

voltage and doping. Recently, Hafez et.al. [21] reported experimental results on the

carrier dynamics in epitaxially grown monolayer graphene [21]. This work demon-

strates that the microscopic mechanisms of nonlinear effects in graphene can be quite

different from their counterparts in ordinary semiconductor systems [21]. The large
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nonlinear response originating from interband transitions is seven orders of magni-

tude stronger than the nonlinear response observed in dielectric materials without

such transitions [17,74]. These theoretical and experimental studies have shown that

the linear energy dispersion and high electron Fermi velocity in graphene leads to a

strongly nonlinear optical response in the THz to FIR regime for various 2D graphene

systems compared with the counterparts in conventional parabolic semiconductor sys-

tems.

While the nonlinear optical properties of 2D graphene structures have been

studied extensively, the nonlinear optical response, which is proportional to the higher

powers of the applied electric field, has been much less studied for graphene nanorib-

bons (GNR). Duan et.al. [9] studied the linear response of intrinsic metallic armchair

GNR in the infrared regime with a linearly-polarized applied electric at low tem-

peratures. Sasaki et.al. [75] proposed optical interband transition selection rules for

acGNR with linearly-polarized electric fields in the transverse and longitudinal direc-

tions. Chung et.al. [76] also investigated the interband selection rules for acGNR. All

of this work focused on the linear response of GNR and did not address the nonlinear

response of acGNR at THz frequencies for an applied linearly-polarized electric field

in the longitudinal and transverse directions.

Wang et.al. [22] find that thin GNRs (sub-20 nm) with smooth edges can be

treated as quasi 1D quantum wires, not dominated by defects. In general, new physics

(quantization of energy, momentum etc.) emerges when the dimensionality of 2D

graphene is reduced to a quasi 1D quantum wire. With the rapid development of
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techniques for the synthesis of thin GNRs [22, 48, 49], thin GNRs (sub-20 nm) may

have ultra smooth edges, higher mobility and longer carrier mean free path than

expected theoretically. Depending on the nature of the edges, there are two types of

GNR: armchair graphene nanoribbons (acGNR) and the zigzag graphene nanoribbon

(zzGNR). Electron dynamics of both acGNR and zzGNR have distinct properties,

due to their geometry and boundary conditions. [41, 42] Metallic acGNR exhibits a

linear band structure in both tight-binding [39, 40] and k · p models. Edge states

contribute significantly to GNR properties, since in a nanoscale GNR, massless Dirac

fermions can reach the ribbon edge within a few femtoseconds before encountering any

other scattering and screening effects, such as electron-electron and electron-phonon

interactions, the Peierls instability, etc. In general, the nonlinearity of GNR originates

from the redistribution of the Dirac fermions in momentum and energy space induced

by the applied electric field [8]. As a consequence, conductivity components oscillating

in time and space, as well as spatially homogeneous steady state components are

expected to be obtained from the resulting nonequilibrium distribution. Thus the

resulting nonlinear response is sensitive to the applied field strength and polarization

[8]. Therefore, it is important to study the electrodynamics for higher order harmonic

generation with the existence of an applied electric field in GNR. In light of recent

reports of the growth of ultra thin acGNR (sub-10 nm) reported by Kimouche et.al.

[48] and Jacobberger et.al. [49], and the fact that Kimouche et.al. [48] show that

defects (kinks) do not strongly modify the electronic structure of ultrathin acGNR, the

study of the nonlinear response of these metallic acGNR is of particular significance
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today.

In this chapter, we develop a semi-analytic approach based on the k · p ap-

proximation in the Coulomb gauge to calculate the nonlinear THz response of thin

acGNR (width < 20 nm) under a moderate applied linearly-polarized electric field

in the longitudinal and transverse directions. We use time dependent perturbation

theory to do a Fourier analysis of the wavefunction in the presence of a strong linearly-

polarized time-harmonic electric field, and obtain the linear and third-order optical

THz response of thin metallic acGNR.

The chapter is organized as follows. In Section 3.2, we begin with the k ·

p approximation to obtain the time-independent wavefunction and the interaction

Hamiltonian with an applied electric field for acGNR, and we present a brief derivation

of our semi-analytical approach to calculate the nonlinear conductance. In Section 3.3,

we apply our model to calculate the nonlinear conductance of metallic acGNR. In

particular, we compare the nonlinear properties of single layer metallic acGNR with

those of intrinsic 2D SLG. We also propose a correction to previous work [52, 55] on

the third order Kerr conductance in intrinsic 2D SLG. We analyze the third-order

nonlinear terms using standard definitions for these quantities: Kerr conductance for

the third-order terms oscillating at frequency ω and third-harmonic conductance for

the terms oscillating at frequency 3ω, determine the required applied electric field

strength to induce non-negligible nonlinear effects and investigate the temperature

and Fermi level dependence of the nonlinear conductance. Following this, a brief

analysis of the selection rules for nonlinear THz direct interband transitions in metallic
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thin acGNR is discussed. Finally, the conclusions are presented in Section 3.5.

3.2 Model

3.2.1 H0, ψ0 and the applied field Eµ

Graphene is a 2D hexagonal lattice (honeycomb) structure of covalently bonded

carbon atoms. As there are 2 atoms per unit cell, we label them A and B respectively.

At low energies, graphene carriers can be described by the massless Dirac equation.

As a consequence, graphene shows a linear energy band structure near the Dirac

points K = 2π
a0

(
1
3
, 1√

3

)
and K′ = 2π

a0

(
-1
3
, 1√

3

)
of the Brillouin zone. Here a0 is the

triangular lattice parameter of the graphene structure. [41,42] (a0 =
√

3acc where acc

is the carbon-carbon separation distance in acGNR and acc = 1.42 Å).

The unperturbed k · p Hamiltonian for graphene can be written in terms of

Pauli matrices as H0,K = ~vFσ · k for the K valley and H0,K′ = ~vFσ · k′ for the K′

valley with k(k′) the perturbation from the center of the K(K′) valley. The corre-

sponding wavefunctions are expressed as envelope functions ψK(r) = [ψA(r), ψB(r)]

and ψK′(r) = [ψ′
A(r), ψ′

B(r)] for states near the K and K′ points, respectively.

Following the development in [41, 42], the time-independent (unperturbed)

Hamiltonian for a single Dirac fermion in GNR can be written as:

H0 =

(
H0,K 0

0 H0,K′

)

= ~vF


0 kx − iky 0 0

kx + iky 0 0 0
0 0 0 −kx − iky
0 0 −kx + iky 0


(3.1)

with wave envelope functions in the case of acGNR:
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ψn,s(r, 0) =

(
ψn,s(r)K
ψn,s(r)K′

)
=

eikyy

2
√
LxLy


e-iθkn,ky eiknx

seiknx

−e-iθkn,ky e-iknx

se-iknx

 (3.2)

with Lx the width of acGNR in the x (zigzag) direction, Ly the length of the acGNR

in the y (armchair) direction and the direction of the isospin of the state is θkn,ky =

tan−1(kn/ky).

Figure 3.1: k·p band structure of infinitely long metallic acGNR of width Lx = 24.6Å

(acGNR20) and Ly → ∞. (a) illustrates the seven lowest-energy bands, and (b)

illustrates the gap of ∼ 608 meV between n = 1 conduction and valence band. Here

d is the width of the acGNR unit cell (d = (1 +
√

3)acc).
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The electronic properties of acGNR depend strongly on their width Lx. The

width of acGNR can be calculated using Lx = N
2
a0, where N is the number of atoms

along the zigzag edge (x̂ direction). In general, acGNR of N = 3M − 1 atoms

wide along the zigzag edge, with M odd, are metallic, whereas all the other cases

are semiconductors [41, 42]. In Fig. 3.1 we plot the band structure of infinitely long

metallic (Ly → ∞) acGNR for N = 20 (acGNR20). One can see that in Fig. 3.1

there is a Dirac point, leading to metallic behavior for a single-electron model. Thus

for a width of the form Lx = 3M−1
2

a0 with M odd, the allowed values of kn = 2π
3a0

M+n
M

create doubly-degenerate states for n ̸= −M and when ky → 0, the existence of a

zero energy state indicates that the conduction and valence band touch at the Dirac

points. The non-metallic bands in Fig. 3.1 are well above THz energies, and as a

result, a THz direct interband transition can only occur between metallic subbands

(kn = 0) for thin metallic acGNR.

Because thin acGNR (sub-20 nm) can be treated as a quasi-1D quantum wire

system [22], we have Bloch states where kx,n = 2π
3a0

M+n
M

and ky,m = 2π
Ly
m. In metallic

acGNR when n = −M , we can write the time-independent wave envelope function

for one Dirac fermion in the lowest subband near the Dirac point, with kx,n = 0 as:

ψ(r, 0;m) = ϕ0(m)ei2πmy/Ly (3.3)

where ϕ0(m) is found to be:

ϕ0(m) =

[
ϕK,0(m)
ϕK′,0(m)

]
=

1

2
√
LxLy


sgn(ky)

s
−sgn(ky)

s

 (3.4)

constructed from Eq. (3.2).
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Let us consider metallic acGNR under an applied linearly-polarized electric

field E = µ̂Eµe
−iωt, of frequency ω with normal incidence. Notice that the time de-

pendent part of the applied field e−iωt corresponds to the absorption process and eiωt

corresponds to the emission process. For time-harmonic fields that turn on adiabati-

cally [53,54] at t→ −∞ and constant scalar potential ∇φ = 0, in the Coulomb gauge

[53] (∇·A = 0) the vector potential [52,53,55] is of the form A = µ̂Eµ exp(−iωt)/(iω)

(see Appendix A for a brief discussion). The interaction with the vector potential is

described by writing the canonical momentum k → k + qA
~ , where q is the elemen-

tary charge. In other words, the total Hamiltonian for graphene in the presence of a

normally-incident electromagnetic field can be written as HK = ~vFσ · (k + qA
~ ) for

the K point and HK′ = ~vFσ · (k′ + qA
~ ) for the K′ point. The total Hamiltonian

for acGNR can be expressed as: H = H0 + Hint, where the interaction part of the

Hamiltonian is given by:

Hint =

(
Hint,K 0

0 Hint,K′

)
(3.5)

with Hint,K(K′) = qvF
iω

σ ·E0e
−iωt where σ = x̂σx+ ŷσy is the Pauli matrix and µ = x, y

indicates the direction of the applied linearly-polarized electric field.

3.2.2 Local conductivity and conductance

In this work, we follow Refs. [32, 34, 52, 54, 55, 57, 68, 69, 71, 73, 77] and make

the relaxation-free approximation, neglecting carrier-phonon and carrier-carrier [78]

scattering, defect scattering, and many body effects in our calculation. Acoustic

phonon scattering may be neglected because the interaction is not phasematched due
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to the large (three orders of magnitude) difference between the carrier Fermi velocity

vF and the acoustic velocity. The optical phonon energy in graphene is ∼ 200 meV

and so for low-energy carriers of the order of a few tens of meV and below, optical

phonon scattering may be neglected as well. Carrier-carrier scattering increases with

the square of the carrier density. Since our model considers extrinsic metallic acGNR

with Fermi energies of the order of a few meV and small excitation field strengths

(∼ 10 kV/m), carrier-carrier scattering and many-body effects may be neglected to

a good approximation. Ultrathin metallic acGNR with smooth edges have recently

been fabricated showing ballistic transport due to the low defect density [48], and so

it is appropriate to neglect defect scattering. Due to the block nature of the total

Hamiltonian H = H0+Hint in the k ·p approximation, we also neglect intravalley and

intervalley scattering in thin metallic acGNRs as well. Thus, the theory presented

in this chapter applies to low-energy (THz) carriers in thin, smooth metallic acGNR

where the higher index bands (kx,n ̸= 0) are well-separated from the lowest-order

linear bands (see Fig. 3.1).

In metallic acGNR, we describe the Dirac fermion under the influence of an

applied electric field µ̂Eµe
−iωt for the metallic band (kx,n = 0) as an envelope wave-

function ψµ(r, t;m) = [ψµ(r, t;m)K , ψµ(r, t;m)K′ ]T . Using the Floquet theorem, the

Fourier series expansion of ψµ(r, t;m) can be written [32,52,55–58] as:

ψµ(r, t;m) =
∞∑
l=0

ϕµ(m, l)ei2πmy/Lye−iωlte−iϵt/~ (3.6)

with the initial condition ϕµ(m, 0) = ϕ0(m), which satisfies the requirement that

when A → 0, ψµ(r, t;m) should be a solution of the Hamiltonian without an applied
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field [32,52,55–57]. The spinor ϕµ(m, l) is given by:

ϕµ(m, l) =

[
ϕµ(m, l)K
ϕµ(m, l)K′

]
=


al(m)
bl(m)
cl(m)
dl(m)

 (3.7)

We can then calculate the charge density as: ρ = |ψµ(r, t;m)|2, where the

particle density operator is ρop(r) = δ(r− rop). After applying the continuity equa-

tion q ∂ρ
∂t

+ ∇ · j = 0, along with the Schrödinger equation Hψµ(r, t;m) = i~∂ψµ(r,t;m)

∂t

under the Coulomb gauge, we obtain the local (single-particle) current density for

Dirac fermions in the metallic sub-band of acGNR:

j(m, t) = x̂jx(m, t) + ŷjy(m, t) (3.8)

with the local current density component defined as:

jν(m, t) = qψµ(r, t;m)†
∂H

~∂kν
ψµ(r, t;m) (3.9)

where µ = x, y indicates the direction of the polarization of the applied electric field,

and ν = x, y indicates the component of the induced current.

After substituting Eq. (3.6) into Eq. (3.9), the Fourier series expansion of the local

current density becomes:
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jν(m, t) =q
[
ϕµ(m, 0) + ϕµ(m, 1)e−iωt + ϕµ(m, 2)e−i2ωt + · · ·

]†
× ∂H

~∂kν
[
ϕµ(m, 0) + ϕµ(m, 1)e−iωt + ϕµ(m, 2)e−i2ωt + · · ·

]
=q

{[
ϕ†
µ(m, 0)

∂H

~∂kν
ϕµ(m, 0) + ϕ†

µ(m, 1)
∂H

~∂kν
ϕµ(m, 1) + · · ·

]
+ e−iωt

[
ϕ†
µ(m, 0)

∂H

~∂kν
ϕµ(m, 1) + ϕ†

µ(m, 1)
∂H

~∂kν
ϕµ(m, 2) + · · ·

]
+ e+iωt

[
ϕ†
µ(m, 1)

∂H

~∂kν
ϕµ(m, 0) + ϕ†

µ(m, 2)
∂H

~∂kν
ϕµ(m, 1) + · · ·

]
+ e−i2ωt

[
ϕ†
µ(m, 0)

∂H

~∂kν
ϕµ(m, 2) + ϕ†

µ(m, 1)
∂H

~∂kν
ϕµ(m, 3) + · · ·

]
+ e+i2ωt

[
ϕ†
µ(m, 2)

∂H

~∂kν
ϕµ(m, 0) + ϕ†

µ(m, 3)
∂H

~∂kν
ϕµ(m, 1) + · · ·

]
+ e−i3ωt

[
ϕ†
µ(m, 0)

∂H

~∂kν
ϕµ(m, 3) + · · ·

]
+ e+i3ωt

[
ϕ†
µ(m, 3)

∂H

~∂kν
ϕµ(m, 0) + · · ·

]
+ · · ·

}

(3.10)

In general, for the study of third-order nonlinear optical processes induced

by an arbitrary superposition of three time-harmonic electric fields, it is customary

to write the local current density due to an individual atom as the product of a

fourth-rank conductivity tensor with the three arbitrary applied fields. In the current

work, we consider a much simpler case. The applied electric field is linearly-polarized

along the longitudinal armchair (transverse zigzag) or ŷ (x̂) direction and has a single

frequency ω. As a result, the expression for the local current density can be written

[68]:
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jν(m, t) =
[
e−iωtσ̃(1)

µν (ω)Eµ + {e−iωtσ̃(3)
νµµµ(−ω, ω, ω)E3

µ

+ e−iωtσ̃(3)
νµµµ(ω,−ω, ω)E3

µ + e−iωtσ̃(3)
νµµµ(ω, ω,−ω)E3

µ}

+ e−i3ωtσ̃(3)
νµµµ(ω, ω, ω)E3

µ + · · ·
]

+ c.c.

=
[
j(1)ν (m,ω, t) + j(3)ν (m,ω, t) + j(3)ν (m, 3ω, t) + . . .

]
+ c.c.

(3.11)

By matching term-by-term the expansions in Eqs. (3.10) and (3.11) , we can obtain

the individual non-zero elements in the local third-order conductivity tensor. Further,

by rewriting Eq. (3.11), we see that the expressions for the Fourier components of the

local current density reduce to terms involving a local 2 × 2 conductivity matrix and

the applied electric field [32,52,55,57]:

j(i)ν (m,ω0) = σ(i)
µν(m,ω0)Eµe

−iω0t (3.12)

where for i = 1, ω0 = ω; and for i = 3, ω0 = ω (ω0 = 3ω) for the Kerr (third-harmonic)

terms in the local current density expansion, and where σ
(i)
µν(m,ω0) is the local ith-

order conductivity matrix defined as for 2D SLG in Refs. [32,52,55,56,56–58,74,79]

To compute the total current density, we sum over all possible states, using the

thermal distribution N(ϵ, EF ) = nF (−|ϵ|, EF ) − nF (|ϵ|, EF ) where |ϵ| = |m|hvF/Ly.

The total current density [32,52,55,56,56–58,74,79] is therefore:

Jν(t) = gs gv
∑
m

jν(m, t)N(ϵ, EF ) (3.13)

with gs, gv = 2 the spin and valley degeneracies respectively. Here the initial occu-

pancy of the system is described by the Fermi function nF (ϵ, EF ). Conduction band

states are occupied with probability nF (|ϵ|, EF ) and valence band states are occupied
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with probability nF (−|ϵ|, EF ). The Brey-Fertig wavefunction of Eqs. (3.3) and (3.4) is

normalized over the entire sample [41,42], implying that the states at ky for each val-

ley are occupied with probability 1/2 (assumes N carriers per unit cell). Since there

are 2N carriers per unit cell, we multiply by gv = 2 to include the contribution to

the total current from all 2N carriers. As the local current density jν(m, t) conserves

charge current density [54, 60, 61] with an applied vector potential A and the sym-

metry of graphene, it is straightforward to expand the total current component Jν(t)

as Fourier series of odd higher-harmonics [16,17,32,34,52,55–57,63,64,66,68,69,71].

Again, following Refs. [68], we write the total current density as:

Jν(t) =
[
e−iωtσ(1)

µν (ω)Eµ + {e−iωtσ(3)
νµµµ(−ω, ω, ω)E3

µ + e−iωtσ(3)
νµµµ(ω,−ω, ω)E3

µ

+e−iωtσ(3)
νµµµ(ω, ω,−ω)E3

µ} + e−i3ωtσ(3)
νµµµ(ω, ω, ω)E3

µ + · · ·
]

+ c.c.

=
[
J (1)
ν (ω, t) + J (3)

ν (ω, t) + J (3)
ν (3ω, t) + · · ·

]
+ c.c

(3.14)

Adopting the notation in Refs. [32,52,55,57,75], we define the ith-order conductance

component [32, 52, 55, 57] as a 2 × 2 conductance matrix relating the total nonlinear

current density and the applied linearly-polarized electric field:

J (i)
ν (ω0, t) = g(i)µν(ω0)Eµe

−iω0t (3.15)

For the metallic band in thin acGNR, with an applied a ŷ-polarized electric

field ŷEye
−iωt, the Hamiltonian H for ky = 2πm/Ly can be written as:
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H = H0 +Hint

= ~vF


0 −i(ky + eEye−iωt

i~ω ) 0 0

+i(ky + eEye−iωt

i~ω ) 0 0 0

0 0 0 −i(ky + eEye−iωt

i~ω )

0 0 +i(ky + eEye−iωt

i~ω ) 0


(3.16)

We then proceed to solve the Schrödinger equation Hψµ(r, t;m) = i~ ∂
∂t
ψµ(r, t;m).

Due to the orthogonal properties of the basis sets {e−ilωt}, we obtain the following

recursion relations for the spinor components:

(ϵ+ n~ω)al(m) = ~(−iky)bl(m) − evFEy
ω

bl−1(m) (3.17a)

(ϵ+ n~ω)bl(m) = ~(+iky)al(m) +
evFEy
ω

al−1(m) (3.17b)

(ϵ+ n~ω)cl(m) = ~(−iky)dl(m) − evFEy
ω

dl−1(m) (3.17c)

(ϵ+ n~ω)dl(m) = ~(+iky)cl(m) +
evFEy
ω

cl−1(m) (3.17d)

For the lowest band in metallic acGNR, the energy of the carriers in the absence of an

applied electric field is −~vF |ky|. Following this procedure, we arrive at the following

local current density terms defined in Eq. (3.12):

j(1)y (m,ω) = qvF

[
i
(
a1(m)b†0(m) − a†0(m)b1(m)

)
+ i
(
c1(m)d†0(m) − c†0(m)d1(m)

)]
(3.18a)

j(3)y (m,ω) = qvF

[
i
(
a2(m)b†1(m) − a†1(m)b2(m)

)
+ i
(
c2(m)d†1(m) − c†1(m)d2(m)

)]
(3.18b)

j(3)y (m, 3ω) = qvF

[
i
(
a3(m)b†0(m) − a†0(m)b3(m)

)
+ i
(
c3(m)d†0(m) − c†0(m)d3(m)

)]
(3.18c)
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j(1)x (m,ω) = qvF

[(
a1(m)b†0(m) + a†0(m)b1(m)

)
−
(
c1(m)d†0(m) + c†0(m)d1(m)

)]
(3.18d)

j(3)x (m,ω) = qvF

[(
a2(m)b†1(m) + a†1(m)b2(m)

)
−
(
c2(m)d†1(m) + c†1(m)d2(m)

)]
(3.18e)

j(3)x (m, 3ω) = qvF

[(
a3(m)b†0(m) + a†0(m)b3(m)

)
−
(
c3(m)d†0(m) + c†0(m)d3(m)

)]
(3.18f)

We make the relaxation-free approximation, neglecting all scattering effects as dis-

cussed above. We introduce an infinitesimal broadening factor [34,52,54,68,69,71,73,

77] Γ, by making the substitution ω = ω + iΓ in the ϕµ(m, l) spinor. The ith-order

local nonlinear conductivity σ
(i)
µν(m,ω0) is then obtained from Eq. (3.12) and summing

over all states, with the Fermi energy EF , ky = 2πm/Ly and ωy = vFky, we obtain

the nonlinear conductance as:

g(i)µν(ω0) = lim
Γ→0

gsgv

∞∑
m=−∞

σ(i)
µν(m,ω0)N(ωy, EF )

= lim
Γ→0

gsgv
Ly
2π

∫ ∞

−∞
dky σ

(i)
µν(m,ω0)N(ωy, EF )

(3.19)

where the thermal factor in Eq. (3.19) is:

N(ωy, EF ) = nF (−~|ωy|, EF )−nF (~|ωy|, EF ) =
sinh[~|ωy|/(kBT )]

cosh[EF/(kBT )] + cosh[~|ωy|/(kBT )]

(3.20)

3.3 Results and Discussion

In what follows, we summarize the characteristics of the nonlinear conductance

for all combinations of applied field polarization and current direction.
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3.3.1 Ex

If the applied electric field E is linearly polarized along the transverse direction

of the acGNR (x̂ direction), for the metallic band where kx,n = 0, a net zero local

current density for the jx(m, t) and jy(m, t) components is obtained. This result

implies there is neither linear nor third-order nonlinear current in metallic acGNR

when an electric field polarized transverse to the longitudinal direction of the acGNR

is applied.

3.3.2 Ey

For the case where the applied electric field E is linearly polarized along the

longitudinal direction of the acGNR (ŷ direction), for metallic band where kx,n = 0,

we arrive at the following expressions for the isotropic nonlinear conductance:

g(1)yy (ω) = g0
gsgvvF
ωLx

[
−N(

ω

2
, EF )

]
g(3)yy (ω) = g0

e2E2
yv

2
F

~2ω4

gsgvvF
ωLx

[
−2N(

ω

2
, EF ) −N(ω,EF )

]
g(3)yy (3ω) = g0

e2E2
yv

2
F

~2ω4

gsgvvF
ωLx

[
1

2
N(

ω

2
, EF ) −N(ω,EF ) +

1

2
N(

3ω

2
, EF )

] (3.21)

and the anisotropic nonlinear conductance:

g(1)yx (ω) = g0
gsgvvF
ωLx

[
N(

ω

2
, EF )

]
g(3)yx (ω) = g0

e2E2
yv

2
F

~2ω4

gsgvvF
ωLx

[N(ω,EF )]

g(3)yx (3ω) = g0
e2E2

yv
2
F

~2ω4

gsgvvF
ωLx

[
−1

2
N(

ω

2
, EF ) +N(ω,EF ) − 1

2
N(

3ω

2
, EF )

] (3.22)

with the N(ω) defined in Eq. (3.20), and the quantum conductance g0 = e2

4~ . Due to

the inversion symmetry inherent in acGNR, the 2nd-order current makes no contri-

bution to the total current.
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In the discussion below, we compare our results for the nonlinear conductance

of metallic acGNR with those reported by Wright, et.al. [52] and Ang et.al. [55] for

intrinsic 2D SLG. In Eq. 70 of Ang et.al. [55], they write the expression for the

third-order Kerr conductance as:

g(3)(ω)2D = −g0
e2E2

0v
2
F

~2ω4

[
2 tanh

(
~ω

2kBT

)]
(3.23)

We believe this expression omits an additional required term due to the resonance at

ϵ = ~ω/2. The correct expression for the third-order Kerr conductance is:

g(3)(ω)2D = −g0
e2E2

0v
2
F

~2ω4

[
5

4
N
(ω

2
, EF

)
+ 2N(ω,EF )

]
(3.24)

Notice that for intrinsic 2D SLG (EF = 0), N(ω, 0) = tanh [~|ω|/(2kBT )], and we

recover the thermal factor used in Refs. [52,55]. The missing 5
4
N(ω

2
) term in Eq. (3.23)

is the missing contribution for |ϵ| = ~ω/2. As both ϵ = ±~ω/2 and ϵ = ±~ω

contribute to the generation of the third-order Kerr current [68, 69, 71], we believe

that Eq. (3.24) is correct. At T = 0 K, the real part of the Kerr conductance has

two threshold frequencies, ω = ±2EF/~ and ω = ±EF/~, corresponding to the

contribution for states with energies ϵ = ±~ω/2 and ±ϵ = ~ω, or the resonant

transitions for which the Fermi level gap 2|EF/~| matches the one photon and two

photon frequencies respectively [69, 71]. We note that the zero temperature result of

Refs. [34, 66, 68, 69, 71, 73] contain the same threshold frequencies. As a result, the

N -photon coupling approach we have adopted [52,55] here and the quantum theories

of the third-order nonlinear response [34,66,68,69,71,73] show qualitative agreement.

The position of the peaks shown in the plots of Refs [34, 68, 69, 71] in the absence
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of broadening are at the threshold frequencies with respect to EF/~ derived from

Eq. (3.24) at T = 0 K. Therefore, we compute g(3)(ω) for 2D SLG using Eq. (3.24)

in what follows.

In Eq. (71) of Ang et.al. [55], they write the expression for the third-order

third-harmonic conductance as:

g(3)(3ω)2D = g0
e2E2

0v
2
F

~2ω4

[
13

48
tanh(

~ω
4kBT

) − 2

3
tanh(

~ω
2kBT

) +
45

48
tanh(

3~ω
4kBT

)

]
(3.25)

Our analysis of the problem gives the same set of coefficients as Eq. (3.25), to wit:

g(3)(3ω)2D = g0
e2E2

0v
2
F

~2ω4

[
13

48
N(

ω

2
, EF ) − 2

3
N(ω,EF ) +

45

48
N(

3ω

2
, EF )

]
(3.26)

For intrinsic 2D SLG (EF = 0), N(ω, 0) = tanh [~|ω|/(2kBT )], and therefore Eq. (3.26)

reduces to Eq. (3.25) used in Refs. [52, 55]. As a result, we compute g(3)(3ω) for in-

trinsic 2D SLG using Eq. (3.26) in what follows. The three threshold frequencies in

Eq. (3.26) are the same as those obtained by Morimoto et.al. [73]. At T = 0 K, the

resonant frequencies are ω = ±2EF/~, ω = ±EF/~ and ω = ±2EF/3~, correspond-

ing to the contribution for states at ϵ = ±~ω/2, ϵ = ±~ω and ϵ = ±3~ω/2, or the

resonant transitions for which the Fermi level gap 2|EF/~| matches the frequencies

of the one photon, two photon, and three photon transitions respectively [69, 71].

Interestingly, the coefficients for ω/2, ω and 3ω/2 for the third-harmonic expression

in Refs. [34, 69, 71], are 17/48, −4/3 and 45/48 respectively. As Mikhailov pointed

out, different theories of the THz nonlinear response in 2D SLG may show somewhat

contradictory [68] results, the difference between these coefficients being due to the
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extreme complexity of the problem. However, we point out that Eq. (3.26) shows that

the main contribution for third-harmonic conductance is from the 3ω/2 resonance.

This observation is confirmed by the results from three independent models: Wright

et.al. [52], Mikhailov [68] and Cheng et.al. [34, 69,71].

A thorough analysis of our objection to the Wright et.al. [52] and Ang et.al. [55]

calculation of the Kerr conductance for intrinsic 2D SLG is provided in the Appendix

B below. The total third-order nonlinear current for metallic acGNR can be expressed

as:

J (3)
ν (t) = g(3)yν (ω)Eye

−iωt + g(3)yν (3ω)Eye
−i3ωt + c.c. (3.27)

This result shows that for metallic acGNR, the third-order nonlinear current is a su-

perposition of two frequency terms: (i) g
(3)
yν (ω), the third-order Kerr conductance,

which has a single frequency electron current density term corresponding to the

absorption of two photons and the simultaneous emission of one photon; and (ii),

g
(3)
yν (3ω), the third-order third-harmonic conductance term corresponding to the si-

multaneous absorption of three photons. The complex conjugate parts in Eq. (3.27)

are for the emission process.

In this chapter we consider the case where the length of the ribbon Ly → ∞,

and as a result, we have a quasi continuum of states for the linear bands near the

Dirac points in metallic acGNR. To simplify the discussion, we present results for

acGNR20, the armchair graphene nanoribbon N = 20 atoms wide.

Figs. 3.2 to 3.7 present results computed using our model described in Sec-

tion 3.2. Fig. 3.2 summarizes the comparison between the results for intrinsic 2D
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SLG and acGNR, indicating that at low temperatures, the isotropic third-order Kerr

conductances is significantly larger than for 2D SLG. At T = 0 K, the third-order

third-harmonic conductance is zero. The room temperature Kerr conductance con-

tinues to be significantly larger, and the third-harmonic conductance becomes of the

order of that for 2D SLG. Fig. 3.3 describes both the temperature and width de-

pendence of the third-order conductances for thin, metallic acGNR. The decay with

increasing temperature for the acGNR Kerr conductances are similar to that of 2D

SLG, with the acGNR conductances maintaining their significantly larger relative

size. For the third-harmonic conductances, quite different behavior is observed; the

acGNR third-harmonic conductance is 0 at T = 0 K, increases to a maximum, and

then decays much faster than for 2D SLG with further increases in temperature. The

decay rate as a function of width for all acGNR third-order conductances is observed

to follow a simple width dependence rule discussed below.

Fig. 3.4 describes the temperature dependence of the field strength required for

the nonlinear conductance to dominate over the linear conductance. Results indicate

that this critical field is quite small, varying from 1 − 5 kV/m for the third-order

Kerr conductance, and exhibiting a minimum of ∼ 5 kV/m for the third-order third-

harmonic conductance. Figs. 3.5 and 3.6 illustrate several novel features of the Kerr

and third-harmonic conductances for extrinsic acGNR as a function of temperature.

For the Kerr conductance, an antiresonance develops at low temperature and broadens

with increasing EF . For the third-harmonic nonlinearity, the antiresonance found at

T = 0 K for intrinsic acGNR is seen to shift to higher temperatures as EF increases.
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Finally, Fig. 3.7, illustrates the behavior of the third-order Kerr and third-

harmonic nonlinearities for extrinsic acGNR as a function of excitation frequency

ω = 2πf . Most remarkably, the third-harmonic nonlinearity is non-zero over a finite

bandwidth at T = 0 K; a result of the state-blocking that occurs in extrinsic ma-

terial. The excitation-frequency dependence of the nonlinear conductances at room

temperature is also show. In the discussion that follows, we investigate each of these

features in more detail.
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Figure 3.2: Comparison of the Kerr and third-harmonic nonlinear conductances for

intrinsic acGNR20 with 2D SLG at (a) T = 0 K and (b) T = 300 K; and comparison

of isotropic and anisotropic conductances for acGNR20 at (c) T = 0 K and (d) T =

300 K. The field strength used in all calculations is Ey = 10 kV/m and the excitation

frequency f = ω/2π.
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The frequency dependent nonlinear conductance in units of g0 = e2/4~ for

intrinsic acGNR20, calculated assuming an applied field strength of 10 kV/m, is plot-

ted in Fig. 3.2, together with the third-order Kerr conductance of 2D SLG. Both

nonlinear terms for intrinsic metallic acGNR20 and 2D SLG decrease rapidly with

frequency. The huge nonlinearities at lower frequencies are associated with the strong

interaction of carriers with low energy photons. The third-order Kerr conductance,

g
(3)
yν (ω) for acGNR20 is approximately three orders of magnitude larger than that for

2D SLG.

The exact enhancement factor for nonlinear conductances in metallic acGNR

is a function of the nanoribbon width, and from Eqs. (3.21) and (3.22), is determined

to be vF/ωLx. Due to the thermal factor cancellation in the expression for the

nonlinear third-harmonic conductance, g
(3)
yν (3ω) tends to be much less than g

(3)
yν (ω).

When T = 0 K, the third-harmonic conductance is zero for intrinsic acGNR20. For

T = 300 K, the third-harmonic conductance is of the same order as for 2D SLG.

In Fig. 3.3, we illustrate the temperature and width dependence of the third-

order nonlinear conductance for intrinsic metallic acGNR and 2D SLG for an exci-

tation frequency of 1 THz and an applied field strength of 10 kV/m. In Figs. 3.3a

and 3.3b, g
(3)
yν (ω) is shown to decrease monotonically with temperature T . However,

g
(3)
yν (3ω) is initially zero at T = 0 K and increases to its maximum value (∼ 2 orders of

magnitude above that for 2D SLG) at approximately T = 17 K (the exact location of

the maximum is a function of the thermal factor appearing in the expressions for the

conductance). It then decreases at a faster rate then g
(3)
yν (ω) for T > 17 K. The rate
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of decrease with temperature for g
(3)
yν (ω) is approximately the same as for 2D SLG.
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Figure 3.3: Comparison of the temperature dependence of the Kerr and third-

harmonic nonlinear conductances for (a) intrinsic acGNR20 with that of 2D SLG;

(b) isotropic and anisotropic nonlinear conductances for intrinsic acGNR20; compari-

son of the nanoribbon width dependence of (c) the Kerr and third-harmonic isotropic

nonlinear conductances; and (d) the Kerr and third-harmonic anisotropic nonlinear

conductance. The excitation frequency used in all calculations is f = ω/2π = 1 THz.

In Figs. 3.3c and 3.3d we see that both third-order nonlinear conductance

components are inversely proportional to the width of the acGNR Lx. This depen-

dence of the conductance on Lx is due to the unitless factor vF/ωLx in Eqs. (3.21)
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and (3.22), which implies that the total quasi-1D nonlinear current is constant and

invariant of the nanoribbon width. We see that for Lx ≃ 20 nm, or acGNR164, g
(3)
yν (ω)

is still greater than that of 2D SLG for an excitation frequency of 1 THz, which again

suggests that thin metallic acGNR (Lx 6 20 nm) manifests a much stronger Kerr

conductance g
(3)
yν (ω) than 2D SLG over a wide range of widths. These findings sug-

gest that metallic acGNR of submicron width is a better candidate than 2D SLG for

nonlinear THz device applications.

In order to evaluate the frequency-conversion device potential of metallic

acGNR, we define a critical field strength E
(3)
c,yν(ω, T ) as the field strength when the

nonlinear conductance dominates over the linear conductance (|g(3)yν |/g0 > 1 where

g0 = e2/4~).
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Figure 3.4: Comparison of the temperature dependence of the critical fields for (a)

the isotropic Kerr and third-harmonic processes for intrinsic acGNR20 with those of

2D SLG; and (b) the isotropic and anisotropic Kerr and third-harmonic nonlinear

processes for intrinsic acGNR20. The excitation frequency used in all calculations is

f = ω/2π = 1 THz.
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In Fig. 3.4 we plot the temperature dependence of the critical field strength for intrin-

sic metallic acGNR assuming a 1 THz excitation frequency. Fig. 3.4a illustrates the

change in critical field as a function of temperature for both intrinsic metallic acGNR

and 2D SLG. Due to the thermal factor cancellation, at low temperatures, the third-

order conductance g
(3)
yν (3ω) for acGNR20 exhibits a larger critical field strength than

2D SLG. As the thermal distribution broadens with increasing T , the critical strength

drops to 10% of the critical field strength for 2D SLG. As the temperature rises fur-

ther, E
(3)
c,yν(3ω, T ) increases until it rises above that for 2D SLG near T = 170 K again.

For the Kerr conductance term, the critical field E
(3)
c,yν(ω, T ), increases as tempera-

ture increases, but it stays ∼ 1 order of magnitude below the critical field for 2D

SLG. Further, the relatively small change in critical field for g
(3)
yν (ω) from T = 0 K to

T = 300 K indicates that metallic acGNR should exhibit excellent frequency conver-

sion efficiencies for the optical Kerr process. The critical field strength we obtained

is much smaller than the damage threshold [74], the strong nonlinear response, or

the small values of the critical field exhibited by metallic acGNR for both Kerr and

third-harmonic nonlinearities suggest that, low THz and low doped metallic acGNR

are preferable to exploit the nonlinearity at intensities well below the damage thresh-

old [80]. As a result, low dopend thin metallic acGNR will be excellent for use in the

fabrication of nonlinear optical frequency-conversion devices [17, 74].

In Figs. 3.5 and 3.6 we study the Kerr g
(3)
yν (ω) and third-harmonic g

(3)
yν (3ω)

conductances as a function of the Fermi level EF (since the behavior of the system

is symmetric for EF about EF = 0 in Figs. 3.5a and 3.6a, we only plot results for
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positive EF ). For EF well below the optical phonon energy (∼ 200 meV), we plot the
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Figure 3.5: (a) The EF dependence of the isotropic Kerr and third-order nonlinear

conductances of acGNR20 at T = 0 K and T = 300 K; (b) the temperature depen-

dence of the isotropic Kerr nonlinear conductance of acGNR20 for various Fermi

levels; and (c) the temperature dependence of the isotropic third-harmonic nonlinear

conductances of acGNR20 for various Fermi levels. The excitation frequency used in

all calculations is f = ω/2π = 1 THz.
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Fermi-level dependence of g
(3)
yν (ω) and g

(3)
yν (3ω) assuming a 1 THz excitation at T =

0 K and T = 300 K. Perhaps the most important observations are for the 0 K case.

We see three threshold frequencies for EF/h: 0.5 THz, 1 THz and 1.5 THz. These

frequencies correspond to turning on/off the thermal distribution [34, 68, 69, 71] at

ω/2, ω and 3ω/2. We note that g
(3)
yν (3ω) is nonzero over the ω/2 to 3ω/2 doping

window. In this window, only the N(ω) thermal factor term contributes to the

g
(3)
yν (3ω) transition. Near room temperature, there are always electron and hole states

[34,69,71] in the energy range determined by the thermal factor. As a result, we always

observe nonzero conductance at all non-zero temperatures. This result suggests that

at low temperatures, light doping will greatly enhance g
(3)
yν (3ω). But the enhancement

we observe at low temperature for g
(3)
yν (3ω) disappears near room temperature. Also,

the curves for different values of EF asymptotically approach the intrinsic acGNR

conductance, as the temperature increases.

In Fig. 3.7, we compare the conductances g
(3)
yν (ω) and g

(3)
yν (3ω) of extrinsic

acGNR20 (EF/h = 0.7 THz) for different temperatures and with the corresponding

values for intrinsic 2D SLG. For the T = 0 K case, we observe a sharp onset for

both the isotropic and anisotropic Kerr conductances at EF/h (ω/2π = 0.7 THz) and

a further increase at 2EF/h (ω/2π = 1.4 THz) for the isotropic Kerr conductance.

These changes are due to different terms in the thermal factor turning on at these

excitation frequencies (see Table I).

The third-harmonic result is significantly different at T = 0 K. In this case the

conductance turns on abruptly at 2EF/3h (ω/2π = 0.467 THz) and turns off abruptly
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Figure 3.6: (a) The EF dependence of the anisotropic Kerr and third-order nonlinear

conductances of acGNR20 at T = 0 K and T = 300 K; (b) the temperature depen-

dence of the anisotropic Kerr nonlinear conductances of acGNR20 for various Fermi

levels; and (c) the temperature dependence of the anisotropic third-harmonic non-

linear conductances of acGNR20 for various Fermi levels. The excitation frequency

used in all calculations is f = ω/2π = 1 THz.

58



www.manaraa.com

at 2EF/h (ω/2π = 1.4 THz). These changes are also due to the relevant terms in

the thermal factor turning on at particular excitation frequencies (see Table I). For

Table 3.1: Thermal Factor Terms for excitation frequency ω (cf. Eqs. (3.21)

and (3.22))

Kerr Conductance (T = 0 K)

Frequency Range Thermal Factor Terms
0 < ω ≤ EF/~ all terms are 0

EF/~ < ω ≤ 2EF/~ N(ω,EF ) = 1
ω > 2EF/~, isotropic 2N(ω/2, EF ) +N(ω,EF ) = 3
ω > 2EF/~, anisotropic N(ω,EF ) = 1

Third-harmonic Conductance (T = 0 K)

Frequency Range Thermal Factor Terms
0 < ω ≤ 2EF/3~ all terms are 0

2EF/3~ < ω ≤ EF/~ −1
2
N(3ω/2, EF ) = −1

2

EF/~ < ω ≤ 2EF/~ N(ω,EF ) − 1
2
N(3ω/2, EF ) = 1

2

ω > 2EF/~ −1
2
N(ω/2, EF ) +N(ω,EF ) − 1

2
N(3ω/2, EF ) = 0

T = 300 K, we note that the extrinsic Kerr conductance is strongly enhanced over

intrinsic 2D SLG, as it is in the intrinsic case. Further, the extrinsic third-harmonic

conductance is of the same order as the 2D SLG nonlinear Kerr conductance value.

Comparing the isotropic conductances with their anisotropic counterparts, we note

similar behavior at T = 300 K. These results indicate that for low temperatures,

there is a strong enhancement of the third-harmonic nonlinearity; however at room

temperature, the Kerr nonlinearity dominates.

Finally, it is worth noting the limitations of our approach. The singularity

around the Dirac point in metallic acGNR leads to high mobility, but acGNR can
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be more prone to edge defects. Furthermore the k · p approximation is appropriate

only at low energies, well below 2 eV [37]. For Fermi energies greater than optical

phonon energy 200 meV, one needs to use a more basic tight-binding description,

and the Dirac physics becomes largely irrelevant [37]. For undoped and lightly-doped

acGNR, the Fermi energy is well away from these energy scales and the description

in terms of the Dirac Hamiltonian should work relatively well.
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Figure 3.7: Comparison of isotropic Kerr and third-harmonic nonlinearities of ex-

trinsic acGNR20 (EF/h = 0.7 THz) at (a) T = 0 K; and (b) T = 300 K with those

of intrinsic 2D SLG; and comparison of isotropic and anisotropic Kerr and third-

harmonic nonlinearities of extrinsic acGNR20 (EF/h = 0.7 THz) at (c) T = 0 K; and

(d) T = 300 K. The field strength used in all calculations is Ey = 10 kV/m and the

excitation frequency f = ω/2π.
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In this chapter, we assume there is no coupling of the local nonlinear current

density with the spatial distribution of the applied electric field. Further, we treat the

metallic acGNR with no applied longitudinal bias voltage, so that the Fermi level does

not change across the longitudinal direction of the nanoribbon. It will be important

to introduce additional effects in the present model such as the finite extent of the

excitation field and the finite longitudinal size of the nanoribbon, as well as material

effects such as electron-electron, electron-phonon interactions, and other edge effects.

These topics are the subject of our future work.

3.4 Selection rules related to acGNR

In this section, we discuss the applicability of well-known selection rules for

acGNR and 2D SLG to the problem of THz nonlinear harmonic generation in thin

metallic acGNR. We focus on the interband transition in the lowest (linear) band

(kx,n = 0). The fact that we have nonzero gyy and zero gxx is consistent with the

selection rules for acGNR found by Sasaki et.al. [75] and HC Chung et.al. [76]

In general, for 2D SLG there is no anisotropic current (Jy, Jx induced by

Ex, Ey). The anisotropic conductance for intrinsic 2D SLG can be written:

g(1)yx (ω)2D = lim
Γ→0

− g0
π2

∫ 2π

0

sin(2θ)dθ

∫ ∞

0

ℜ
[
i
v2F
ω2

kvF
2kvF − ω − iΓ

k tanh(
~vFk
2kBT

)

]
dk

g(3)yx (ω)2D = lim
Γ→0

g0
π2

η2

2

∫ 2π

0

sin(2θ)dθ

×
∫ ∞

0

ℜ
[
i
v2F
ω2

k2v2F [−kvF + ω + kvF cos(2θ)]

[(2kvF − ω)2 + Γ2](kvF − ω − iΓ)
k tanh(

~vFk
2kBT

)

]
dk
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g(3)yx (3ω)2D = lim
Γ→0

g0
π2

η2

6

∫ 2π

0

sin(2θ)dθ

×
∫ ∞

0

ℜ

[
i
v2F
ω2

kvF [k2v2F − 3kvFω + 4ω2 − k2v2F cos(2θ)]k tanh( ~vF k
2kBT

)

(2kvF − ω − iΓ)(kvF − ω − iΓ)(2kvF − 3ω − i3Γ)

]
dk

(3.28)

where η = eAyvF
~ω = eEyvF

~ω2 measures the e-h coupling strengh. Using this result, we see

that because
∫ 2π

0
sin(2θ) = 0, the conductance terms g

(i)
yx(ω0)2D = 0 for 2D SLG. The

g
(i)
xy (ω0)2D = 0 from similar analysis. The zero anisotropic current in 2D SLG results

from that fact that the net sum is zero over all possible angles, and agrees with the

quantum analysis performed in Ref. [68] for 2D SLG.

However, as shown above for metallic acGNR, Jν , σ
(i)
µν(m,ω) has the general

form:

σ(i)
yν (m,ω) = F (i)

yν (|ky|) cos(θkn,ky) (3.29)

For metallic acGNR, we no longer integrate all possible angles as we did for 2D SLG.

Due to the 1D nature of acGNR, we only have θkn,ky = 0, π depending on the sign of

ky, and thus we only evaluate at two angles according to the initial condition given

by Eq. (3.4) when we evaluate the total current density Jν for metallic acGNR. As

a result, Jν is not always zero for all EF , ω and T . For direct interband transitions

between states where kx,n ̸= 0, we make a similar argument as we only require states

at |ϵ| = ~vFkx,n csc(θkn,ky) to be at resonance. Thus, we only have the θkn,ky and

π − θkn,ky pair as the two solutions. In this way, we extend the selection rules of the

direct interband transition for acGNR to the Jx case, i.e. kx,n does not change from

initial state to final state. This is the same requirement as for Jy in acGNR.
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3.5 Concluding Remarks

Kimouche et.al. [48] and Jacobberger et.al. [49] have successfully fabricated

ultrathin, smooth acGNR with widths Lx < 10 nm. Our calculation of the nonlinear

conductance in acGNR suggest that experimental measurements of the THz nonlinear

response in thin metallic acGNR should be measurable at relatively low excitation

field strengths. The relatively small critical field strength at room temperature implies

that thin metallic acGNR have significant potential for nonlinear device applications.

The striking turn on and turn off of the third-order harmonics with small changes in

Fermi level at low temperatures suggest that metallic acGNR could be the the basis

for developing a sensitive graphene-based low temperature detector or oscillator.

In this chapter, we have modeled the third-order THz response of metallic

acGNR using a nonlinear semi-analytical approach. The time-dependent Dirac equa-

tion for massless Dirac Fermions is solved via the Fourier expansion method. We

have shown intrinsic metallic acGNR exhibits strong nonlinear effects from the THz

to the FIR regime under applied electric field amplitudes less than 10 kV/m. We also

describe the behavior of these nonlinearities for extrinsic, metallic acGNR. Under cer-

tain conditions, metallic acGNR will exhibit a larger nonlinear conductance, require

less applied electric field strength to generate moderate strong high harmonics and

show better temperature stability than intrinsic 2D SLG. This opens the potential

for use in many device applications for intrinsic and slightly doping metallic acGNR.
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CHAPTER 4
QUANTUM SIZE EFFECTS IN THE TERAHERTZ THIRD ORDER
NONLINEAR RESPONSE OF METALLIC ARMCHAIR GRAPHENE

NANORIBBONS

1 In this chapter, we use time dependent perturbation theory to study quan-

tum size effects on the terahertz nonlinear response of metallic graphene armchair

nanoribbons of finite length under an applied electric field. Our work shows that

quantization due to the finite length of the nanoribbon, the applied field profile, and

the broadening of the graphene spectrum all play a significant role in the resulting

nonlinear conductances. In certain cases, these effects can significantly enhance the

nonlinearity over that for infinitely-long metallic armchair graphene nanoribbon.

4.1 Introduction

Graphene has many unique electronic, mechanical, thermal and optoelectronic

properties [2]. A tunable Fermi level and linear dispersion relation near the Dirac

point are some of the features that make graphene attractive for the study of nonlin-

ear effects in the terahertz (THz) regime [6–8,16–18]. Various theoretical predictions

of the generation of higher-order harmonics in graphene structures had been per-

formed [32,52,57,63–65]. Recent experimental reports on the measurement of the THz

nonlinear response in single- and multi-layer graphene [19–21] further demonstrate

that graphene structures possess a strong nonlinear THz response. These theoretical

1This chapter was published in IEEE. J. Sel. Top. Quant. Electro. 23(1), 5100108
(2017) [81].
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and experimental studies demonstrate that, when compared to conventional parabolic

semiconductor structures, unique graphene properties, such as linear energy disper-

sion, high electron Fermi velocity and tunable Fermi level, lead to a stronger nonlinear

optical response in many 2D graphene structures [6–8,16–21,32,52,57,63–65].

Unlike the extensive research on the nonlinear response of 2D graphene struc-

tures, prior to our work, only the linear THz response [9,82] and selection rules [75,76]

of graphene nanoribbons (GNR) for a linearly polarized electric field have been in-

vestigated. Thin GNRs (sub-20 nm) with smooth edges can be treated as quantum

wires, not dominated by defects [22]. The reduced dimensionality of 2D graphene to

a quasi 1D quantum wire for narrow GNR opens the study of new physics (including

quantization of energy, momentum etc.). GNRs have two types of edges: armchair

graphene nanoribbons (acGNR) and zigzag graphene nanoribbons (zzGNR). These

two types of GNR shows distinct electronic characteristics due to the geometry and

boundary conditions [39–42]. In general, redistribution of the Dirac fermions induced

by the applied electric field in momentum and energy space leads to large THz nonlin-

earities in GNR. The resulting nonequilibrium distribution predicts the conductivity

components oscillating in time and space, and spatially homogeneous steady state

components. As a result, nonlinear response in GNRs are sensitive to the applied

field strength and polarization [8].

A widely used model, the perturbation of the Fourier expansion of the wave-

function first adopted by Wright et.al. [52] in the study of the THz nonlinear response

of various 2D graphene systems [32,52,55,57] has two important assumptions: i) the

65



www.manaraa.com

absence of coupling between the induced nonlinear response and the applied electric

field spatial profile; and ii) charge carriers propagate with ideal ballistic transport

in graphene, with the absence of broadening due to various scattering processes [10].

Velickỳ, Mašek and Kramer have developed a model of the AC ballistic/quasi-ballistic

conductance in 1D quantum wires with an arbitrary spatial profile of the applied elec-

tric field [83–85]. Wróbel et.al. measured and analyzed the role of reduced dimen-

sionality in the quantized conductance of an GaAlAs/GaAs quantum wire [86, 87].

As thin GNRs with finite length in our study possess a low dimensional mesoscopic

structure, it is natural to use these ideas to extend this analytical approach to the

nonlinear response of thin GNRs with an applied electric field.

Carrier relaxation in graphene near the Dirac point is caused primarily by

scattering of hot carriers [88–91]. Two typical carrier relaxation times have been

reported, 25 ps for EF ≪ 200 meV, where 200 meV corresponds to the optical phonon

energy [88] and a few ps for states involving optical phonon scattering [88–93]. Current

limitations to the utilization of thin GNRs for nonlinear device applications result

from scattering due to edge defects and hot carriers [89–91,94–96]. Furthermore, edge

disorder can affect the interband transition process due to the extra energy required

to satisfy the conservation laws in the interband transition process [92,97]. Our work

focuses on the THz emission due to direct interband transition of graphene carriers

with energy ≪ 200 meV in thin metallic acGNR. Scattering due to hot carriers and

optical phonons is reduced for the THz direct interband transition [90,97,98]. Further,

scattering due to acoustic phonons is prohibited for these interband transition [98].
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Therefore, carrier relaxation in finite GNR structures mainly depends on edge disorder

and defects.

Theoretical studies show that non-perfect edges destroy the quantization of the

conductance for GNRs [99]. However, the rapid development of techniques for the

synthesis of thin GNRs [22,48,49], show that thin GNR may have ultra smooth edges,

higher mobility, and longer carrier mean free path than expected theoretically. The

recent reported synthesis of ultra thin acGNR (sub-10 nm) show that the electronic

structure of ultrathin acGNR is not strongly affected by defects (kinks) [48, 49]. It

is possible for thin GNR mesoscopic structures grown in the laboratory to show

ballistic and quasi-ballistic transport. Scattering along the channel direction is greatly

reduced in the ballistic and quasi-ballistic regime [4]. Such progess in the state of

art of the growth of ultra thin GNR highlights the potential for quasi 1D GNR

mesoscopic structures to be used in modern ultra-high-speed electronic and quantum

devices [4]. Thus the study the nonlinear electrodynamics for thin metallic acGNR

with an applied electric field with finite length in the mesoscopic regime is of particular

significance today.

In this chapter, we present important new results showing that the quantum

size effects of nanonribbon length, spectral broadening, and excitation field coupling

significantly modify the THz nonlinear response of thin metallic acGNR. These novel

effects play an essential role in the behavior of THz nonlinearities in acGNR, and

have not previously been investigated. In particular, we find that quantization of the

broadened Dirac particle spectrum results in a transition from a discrete quantum dot-
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like spectrum for small nanoribbon lengths to a continuous spectrum as the length of

the nanoribbon increases. We evaluate the boundary between these two qualitatively

distinct behaviors in terms of the coupling between adjacent energy states due to the

broadening. Further, we find that the exact spatial profile of the THz excitation field

plays a significant role in the nonlinear response. The spatial Fourier spectrum of

the excitation field serves to enhance the nonlinearity at photon energies near states

where the spectrum exhibits maxima, and reduces the response near spectral minima.

By apodizing [100] the excitation field profile it becomes possible to optimize the THz

nonlinearities at a particular desired pump frequency.

The chapter is organized as follows: In Section 4.2, we model the THz non-

linear response for thin metallic acGNR of finite length. We analyze the nonlinear

response of these acGNR in the presence of intrinsic broadening and the coupling of

the applied electric field profile to study the impact of quantum size effects on the

THz nonlinearities. In Section 4.3, we apply our model to calculate the nonlinear

THz conductance of thin metallic acGNR. We analyze the dependence of the third-

order nonlinear terms on the ribbon length, temperature, and length of illumination.

Following the introduction of broadening, we propose an effective critical length, char-

acterizing the quantization of energy due to finite length impacting the continuum of

states. We then show that in metallic acGNR with length smaller than the effective

critical length, the THz third-harmonic conductance is greatly enhanced to nearly

the order of the THz third-order Kerr conductance in the THz regime. This result

shows that the tunability of thin metallic acGNR in the terahertz regime is increased.
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Finally, we present our conclusions in Section 4.4.

4.2 Model

Following the low energy model for GNR [41, 42], the time-dependent, un-

perturbed k · p Hamiltonian for a single Dirac fermion near the Dirac points may

be written in terms of Pauli matrices as H0,K = ~vFσ · k for the K valley and

H0,K′ = ~vFσ · k′ for the K′ valley with k (k′) the perturbation from the center of

the K (K′) valley. The time-independent (unperturbed) Hamiltonian for GNR may

be written:

H0 = ~vF


0 kx − iky 0 0

kx + iky 0 0 0
0 0 0 −kx − iky
0 0 −kx + iky 0

 (4.1)

with wavefunctions in the case of acGNR:

ψn,s =
eikyy

2
√
LxLy


e-iθkn,ky eiknx

seiknx

−e-iθkn,ky e-iknx

se-iknx

 (4.2)

where Lx = Na0/2 is the width of the acGNR in the x̂ (zigzag) direction, Ly is the

length of the acGNR in the ŷ (armchair) direction, and θkn,ky = tan−1(kn/ky) is the

direction of the isospin state. This Hamiltonian does not include intervalley scattering

processes due to its block-diagonal character.

The width of acGNR determines the metallic or semiconductor character of

the acGNR [41,42]. In general, acGNR of N = 3M − 1 atoms wide along the zigzag

edge, with M odd, are metallic, whereas all other cases are semiconducting. The

energy dispersion relation arising from this model is doubly-degenerate, with one
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branch coming from each of the K and K′ valleys.

4.2.1 AC conductance

Due to the quasi-1D structure of the thin acGNR [22] and the resultant quan-

tization in k space, we need to consider the coupling of the applied electric field with

the quantized k-states. The AC conductance g̃(ω) is defined in terms of the absorbed

power P (ω) for an acGNR locally excited with electric field E(r, ω):

g̃(ω) ≡ P (ω)

ϕ2(ω)/2
, ϕ(ω) =

∫
E(r, ω) · dr (4.3)

where ϕ(ω) is the change of the electric potential in the irradiated region. The

absorbed power may be expressed by the conductivity and the acting field as:

g̃(ω) =
1

2

∫
dk

2π
σ(k, ω) |E(k, ω)|2 (4.4)

The ith order AC conductance for infinitely long acGNR g̃
(i)
yν (ω) is written [83–85]:

g̃(i)yν (ω, L) =
gsgvLy

2π

∫ +∞

−∞
dky σ

(i)
yν (m,ω)

(
sin(kyL/2)

kyL/2

)2

(4.5)

with L the length of illumination. For simplicity, we assume a constant field strength

over the length of illumination L.

Defining ωy = kyvF , the corresponding angular frequency of ky in GNR with

a group velocity of vF in the relaxation-free approximation, neglecting all scattering

effects [10], we rewrite Eq. (4.5) for the third-order AC conductance as:

g̃(3)yν (ω,L) =
2∑
l=1

2

∫ ∞

0

dωy f̃
(ω)
yν (ωy,

ωl

2
)δ(ωy −

ωl

2
) (4.6a)

g̃(3)yν (3ω,L) =
3∑
l=1

2

∫ ∞

0

dωy f̃
(3ω)
yν (ωy,

ωl

2
)δ(ωy −

ωl

2
) (4.6b)

70



www.manaraa.com

where

f̃ (ω0)
yν (ωy,

ωl

2
) = f (ω)

yν (ωy,
ωl

2
)N(ωy)S(ωy, L) (4.7)

with the thermal factor:

N(ωy) =
sinh

(
~|ωy|
kBT

)
cosh

(
EF

kBT

)
+ cosh

(
~|ωy|
kBT

) (4.8)

and the illumination factor:

S(ωy, L) = sinc2
(
ωyL

2vF

)
(4.9)

and where the Fermi level is EF = hfµ, and f
(ω0)
yν (ωy,

ωl
2

) is the coefficient associated

with the corresponding δ(ωy − ωl
2

) term in the expansion of the expression for the

local third-order conductivity (see [10, eq. (41-42)]).

With an applied electric field linearly polarized along the ŷ direction of an in-

finitely long acGNR, for the metallic band where kx,n = 0, the AC isotropic nonlinear

conductance becomes [10]:

g̃(1)yy (ω,L) = −g0ηxN
(ω

2

)
S
(ω

2
, L
)

(4.10a)

g̃(3)yy (ω,L) = −g0η ηx
2∑
l=1

(
1

2

)−z(l)

N

(
ωl

2

)
S

(
ωl

2
, L

)
(4.10b)

g̃(3)yy (3ω,L) = −g0η ηx
3∑
l=1

(
−1

2

)z(l)
N

(
ωl

2

)
S

(
ωl

2
, L

)
(4.10c)

similarly, the AC anisotropic nonlinear conductance is:

g̃(1)yx (ω, L) = g0ηxN
(ω

2

)
S
(ω

2
, L
)

(4.11a)

g̃(3)yx (ω, L) = g0η ηxN(ω)S (ω, L) (4.11b)

g̃(3)yx (3ω, L) = g0η ηx

3∑
l=1

(
−1

2

)z(l)
N

(
ωl

2

)
S

(
ωl

2
, L

)
(4.11c)
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where the quantum conductance g0 = e2/ (4~), Fermi level EF = hfµ, harmonic

constant z(l) =
[
1 − (−1)l

]
/2, gain due to the width ηx = (gsgvvF ) / (ωLx) and

the coupling strength η =
(
e2E2

yv
2
F

)
/ (~2ω4). The illumination factor S(ω,L) in

Eq. (4.10) and Eq. (4.11) arises from the finite illumination length and is the square

modulus of the Fourier transform of the applied field profile. As a result of the

inversion symmetry inherent in acGNR, the 2nd-order current makes no contribution

to the total current.

The total third-order nonlinear conductance for metallic acGNR then can be

expressed as:

g̃
(3)
tot,yν(ω, L) = g̃(3)yν (ω, L)e−iωt + g̃(3)yν (3ω,L)e−i3ωt + c.c. (4.12)

This result shows that for infinitely long metallic acGNR, the third-order nonlinear

conductance is a superposition of two frequency terms: i) g̃
(3)
yν (ω, L), the Kerr con-

ductance term corresponding to the absorption of two photons and the simultaneous

emission of one photon; and ii) g
(3)
yν (3ω,L), the third-harmonic conductance term cor-

responding to the simultaneous absorption of three photons. The complex conjugate

parts in Eq. (4.12) are for the emission process.

We observe that by taking the limit L → 0, the ideal conductance and AC

conductance in our definition are equivalent: g
(i)
µν(ω) = g̃

(i)
µν(ω, 0). For L = 0, there

is no coupling between the induced nonlinear response and the applied field spatial

profile. Due to the current operator qvFσx,yδ(r− rop) used in our previous work [10],

we assume graphene carriers at rop interact only with the incoming photon field at

rop. The conductance g
(i)
µν(ω) is a special case of the AC conductance g̃

(i)
µν(ω, L), and
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the AC conductance g̃
(i)
µν(ω, L) reduces to the ideal conductance g

(i)
µν(ω) at L = 0.

4.2.2 Broadening

We employ a Gaussian broadening model to study the impact on the nonlinear

conductance due to spectral broadening of acGNR in the THz regime. This Gaussian

broadening method has been widely used in the study of many graphene and GNR

structures [101–103]. The Gaussian kernel,

Zg(ωy, ω) =
1√
πΓω

exp

[
−(ωy − ω)2

Γ2
ω

]
(4.13)

with Γω = 2πfΓ = 2π
(

2τ
√

ln 2
)−1

and τ the relaxation time, replaces the Dirac delta

function in the integrand of Eq. (4.6).

In this work, we neglect edge defects in the acGNR. We further assume the

broadening parameter remains a constant in the THz regime, and is invariant of the

temperature and applied field strength Ey. We obtain the value τ = 25 ps from

[88, Table I] and therefore, the broadening parameter used in Eq. (4.13) becomes

fΓ = 0.024 THz. This choice of the broadening parameter is appropriate because

the direct interband transition in the THz regime is well below the 200 meV optical

phonon band. We note however, that our model can be extended to situations with

larger carrier scattering. As τ is reduced, the quantization of the conductance tends

to be dominated by other scattering processes. As a result, the mean free path of the

carriers becomes shorter, and the interaction between adjacent states defined by the

quantization condition becomes stronger.
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4.2.3 Quantization due to finite length

In all real nanoribbons, the length Ly of the nanoribbon will be finite. This

results in a discrete set of electronic states along the ky direction, as opposed to the

continuum of states that results for Ly → ∞. In this case, the resulting third-order

conductances are obtained by summing over the discrete set of states rather than

integrating over the continuum.

In metallic acGNR, when kx,n = 0, the energy dispersion relation may be

written ϵ = s|m|~ωy0, with ωy0 = 2πvF/Ly. For a finite nanoribbon length of Ly and

broadening Γω, with ωy = mωy0, the third-order AC conductance becomes:

g̃(3)yν (ω, L, Ly,Γω) =
∞∑
m=0

2∑
l=1

2f̃ (ω)
yν (ωy,

ωl

2
)Zg(ωy,

ωl

2
)ωy0 (4.14a)

g̃(3)yν (3ω, L, Ly,Γω) =
∞∑
m=0

3∑
l=1

2f̃ (3ω)
yν (ωy,

ωl

2
)Zg(ωy,

ωl

2
)ωy0 (4.14b)

4.3 Results and Discussion

We consider thin acGNR with finite length Ly, for which there exists an energy

quantization with quantum number m, for states of the linear bands near the Dirac

points in thin metallic acGNR. To simplify the discussion, we present results for

acGNR20, the armchair graphene nanoribbon N = 20 atoms wide, which can be

treated as a quasi 1D quantum wire [22], and the applied field strength is Ey =

10 kV/m throughout. In what follows, we summarize the characteristics of the AC

nonlinear conductance for all combinations of length of illumination and Fermi level,

given in Eq. (4.14). We plot the isotropic and anisotropic AC conductances as a

function of Ly with T = 0 K and 300 K, and L → 0 for intrinsic acGNR in Fig. 4.1.
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Figure 4.1: Magnitude of the third-order nonlinear conductances in acGNR20 at T =

0 K and 300 K as a function of nanoribbon length Ly. a) isotropic Kerr conductance,

b) isotropic third-harmonic conductance, c) anisotropic Kerr conductance, and d)

anisotropic third-harmonic conductance. For all plots, f = 1 THz, EF = 0, L = 0,

and fΓ = 0.024 THz.

The frequency of the applied field is f = 1 THz. Due to the energy quantization

resulting from finite Ly, interband transitions can only be excited for states coupled

by the excitation frequency 2πf = ω, namely those where ω/2 = Mωy0/2 (single-

photon resonance), ω = Mωy0 (two-photon resonance), and 3ω/2 = 3Mωy0/2 (three-

photon resonance for the third-harmonic nonlinearity) where M is an integer and

where ωy0 = 2πvF/Ly is the separation between the discrete states. If M is odd,
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then M/2 and 3M/2 are not integers and states at these energies do not exist. This

implies that contributions from the ω/2 and 3ω/2 components of the conductance

are nearly zero (exactly zero in the absence of broadening). If M is even, M/2 and

3M/2 are both integers, thus contributions from the ω/2 and 3ω/2 components of

the conductance are non-zero. In summary, for M = fLy/vF even, Eq. (4.14) is

equivalent to Eqs. (4.10) and (4.11). For M odd, the N(ω/2) and N(3ω/2) terms in

Eq. (4.14) are negligible. In Fig. 4.1, we can see clearly how the ribbon length Ly

affects the conductance. For small Ly, the broadening is smaller than the separation

between states and we observe quantization of the conductance. In essense, the

acGNR behaves as a rectangular quantum dot. When Ly becomes longer, the states

move closer together and there is overlap due to broadening for adjacent energy states.

As a result, the overall conductance approaches a constant value. We arrive at an

effective critical length L
(ω)
yc = 2vF/3fΓ bounding the quantum and continuum regions

for the Kerr conductance. Similarly, the effective critical length for the third-harmonic

conductance L
(3ω)
yc = vF/fΓ. Both critical lengths are independent of f in the THz

regime. For fΓ = 0.024 THz, L
(ω)
yc ∼ 27 µm and L

(3ω)
yc ∼ 42 µm. When Ly is greater

than the effective critical length, the conductance converges to the conductance of

an infinitely-long acGNR, and we enter the quasi-continuum regime due to the fact

that the broadening now overlaps adjacent states. Such asymptotic behaviour can be

observed in Fig. 4.1 when Ly is greater than the critical length.

In Fig. 4.2 we plot the temperature dependence of the isotropic and anisotropic

AC conductances for several nanoribbon lengths Ly with L → 0. The frequency of

76



www.manaraa.com

Figure 4.2: Magnitude of the third-order nonlinear conductances in acGNR20 for

various nanoribbon lengths as a function of temperature T . a) isotropic Kerr con-

ductance, b) isotropic third-harmonic conductance, c) anisotropic Kerr conductance,

and d) anisotropic third-harmonic conductance. For all plots, f = 1 THz, EF = 0,

L = 0, and fΓ = 0.024 THz (fΓ → 0) for nanoribbons of finite (infinite) length.

the applied field is f = 1 THz. For the Kerr conductances as shown in Figs. 4.2a

and 4.2c: when Ly = 7 µm (M = 7), the conductance is dominated by the N(ω)

term; when Ly = 16 µm (M = 16), both the N(ω/2) and N(ω) terms contribute;

and when Ly = 27 µm, we arrive at the critical length and the conductance is nearly

the same as that for the infinitely-long nanoribbon for T > 0 K. For the third-
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harmonic conductances as shown in Figs. 4.2b and 4.2d we observe similar behavior:

when Ly = 7 µm (M = 7), the conductance is dominated by the N(ω) term; when

Ly = 16 µm (M = 16), the N(ω/2), N(ω), and N(3ω/2) terms contribute; and when

Ly = 42 µm, we arrive at the critical length and the conductance is nearly the same

as that for the infinitely-long nanoribbon for T > 5 K.

It has been shown that the local AC current response depends on the spatial

profile of the applied electric field for quasi 1D quantum wires [83–85]. In Fig. 4.3, we

plot the isotropic nonlinear conductances as a function of the illumination length L.

For the Kerr conductance plotted in Figs. 4.3a and 4.3b we note a series of antires-

onances in the magnitude of the conductance. For the intrinsic nanoribbon, these

antiresonances occur when the zeros of the illumination factor S(ω, L) are located

at the same frequency as the states coupled by the excitation field of frequency f

(those having non-negligible contributions from N(ωy)). For the Kerr conductance of

the intrinsic nanoribbon with Ly → ∞, both the N(ω/2) and N(ω) terms contribute

to the conductance, resulting in an antiresonance spacing determined by setting the

zeros in the illumination factor equal to ω/2. This results in the set of antiresonances

at L = 2 µm, 4 µm, .... For the extrinsic case, there are two mechanisms contributing

to the antiresonances: 1) the zeros in the illumination factor, and 2) state blocking

due to the Fermi level offset. For example, in Fig. 4.3a (T = 0 K), for the extrinsic

nanoribbons transitions at ω/2 are completely blocked, and therefore only the N(ω)

term contributes, resulting in an antiresonance spacing determined by setting the ze-

ros in the illumination factor equal to ω. This results in the set of antiresonances at
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Figure 4.3: Magnitude of the isotropic third-order nonlinear conductances in

acGNR20 for various nanoribbon lengths and Fermi levels as a function of illumi-

nation length L. a) Kerr conductance at T = 0 K, b) third-harmonic conductance at

T = 300 K, c) Kerr conductance at T = 0 K, and d) third-harmonic conductance at

T = 300 K. For all plots, f = 1 THz and fΓ = 0.024 THz (fΓ → 0) for nanoribbons

of finite (infinite) length.

L = 1 µm, 2 µm, ... for both M even and odd. In contrast, for Fig. 4.3b (T = 300 K),

for the M odd case, the N(ω/2) contribution is negligible and we obtain a similar

result as for the T = 0 K case. However, for M even, the N(ω/2) term is not com-

pletely blocked, and as a result (setting the zeros in the illumination factor equal to
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ω/2), we obtain antiresonances at L = 2 µm, 4 µm, ....

For the third-harmonic conductance plotted in Figs. 4.3c and 4.3d, the behav-

ior is even richer than for the Kerr conductance. While the set of primary antireso-

nances follows the discussion above, a pair of sidelobe resonances surrounding each

primary resonance is also observed. These sidelobe resonances result from the fact

that the N(ω/2) and N(3ω/2) terms in the expression for the conductance (4.10c)

have the opposite sign of the N(ω) term. Thus, for certain non-zero values of the

illumination factor S(ω,L), the positive and negative thermal factor contributions ex-

actly cancel and the sidelobe antiresonances manifest themselves. Because the exact

value of the thermal factor functions change with temperature, the locations of these

sidelobe antiresonances also shift with temperature. This effect can also be observed

in Figs. 4.1b and 4.1d.

We also note here that for T = 0 K, and Ly → ∞, with a uniform illumina-

tion factor S(ω, L) = 1 (L → 0) the third-harmonic conductance is always zero for

intrinsic nanoribbons and only non-zero over a limited frequency range for extrinsic

nanoribbons (2|EF |/3 6 ~ω 6 2|EF |) [10]. By extending the illumination range L

(and therefore modulating the illumination factor) it is possible to enhance the third-

harmonic conductance in these conditions so that for particular illumination lengths

L, the third-harmonic conductance becomes of the order of the Kerr conductance

magnitude.

In the interest of brevity, we do not plot the anisotropic nonlinear conduc-

tances, but simply note that the expression for the Kerr conductance contains only an
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N(ω) term. As a result, the characteristics of the anisotropic Kerr conductance follows

closely that of the isotropic Kerr conductance with resonances at L = 1 µm, 2 µm, ...

as discussed above. On the other hand, the anisotropic third-harmonic conductance

contains all of the richness of its isotropic counterpart.

Fig. 4.4 illustrates the overall impact of the various quantum size effects we

have discussed above on the magnitude of the third-order Kerr and third-harmonic

conductances. In Figs. 4.4a and 4.4b, we plot the isotropic Kerr and third-harmonic

conductances for several values of nanoribbon length Ly, temperature, and excitation

frequency. The oscillatory nature of these curves highlights the interplay between

the thermal factor (and thermal factor cancellation in the case of the third-harmonic

conductance), state blocking, and the illumination factor. While the overall envelope

of the Ly = 10 µm, L = 0.5 µm conductances decay with increasing frequency as ex-

pected (generally following the results for the Ly → ∞, L = 0.5 µm case), there is

clearly a richness in the detailed oscillatory behavior governed by the exact charac-

teristics of the illumination and sample geometries. Similar effects are noted in Figs.

4.4c and 4.4d for the anisotropic nonlinear conductances as well. It is also useful

to point out here that it should be possible to modify this dynamical behavior by

apodizing [100] the applied THz electric field. For example, by using a Gaussian-

apodized profile for the applied electric field, it should be possible to eliminate the

antiresonances induced by the illumination factor S(ω, L). This would significantly

reduce the oscillatory character of the results presented in Fig. 4.4.

In summary, the results described above place important constraints on the
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Figure 4.4: Magnitude of the third-order nonlinear conductances in acGNR20 for

various nanoribbon and illumination lengths, and temperatures as a function of exci-

tation frequency f . a) isotropic Kerr and third-harmonic conductances at T = 0 K,

b) isotropic Kerr and third-harmonic conductances at T = 300 K, c) anisotropic

Kerr and third-harmonic conductances at T = 0 K, and d) anisotropic Kerr and

third-harmonic conductances at T = 300 K. For all plots, EF/h = 0.7 THz and

fΓ = 0.024 THz (fΓ → 0) for nanoribbons of finite (infinite) length.

development of metallic acGNR THz devices. For a fixed excitation field frequency,

the nanoribbon length Ly, illumination factor S(ω,L), intrinsic broadening Γω, and

carrier distribution (EF ) will need to be carefully considered based on a particular
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device application. For example, by appropriate choice of these parameters, it is

possible to use an acGNR to generate third-harmonic radiation at T = 0 K, whereas

for other sets of parameters, the third-harmonic component is zero. While it is be-

yond the scope of this chapter to delve into such design details, we note that the

results presented here will guide the designer toward an optimal design. The efficient

THz nonlinear response of acGNR described above provides much promise toward

the development of devices such as polarization switches, modulators, and efficient

background-free third-harmonic generators.

4.4 Conclusion

In this chapter, we describe the results of detailed calculations of the quantum

size effects on the nonlinear third-order conductances of acGNR. We report that

novel effects due to both the size and spectral broadening of the nanoribbon, as

well as the spatial profile of the excitation field, are important in determining the

nonlinear response of acGNR. We compute the THz third-order nonlinearities of a

thin, finite-length metallic acGNR. Our calculations show that there is a transition

between quantum dot-like behavior for small Ly and quasi-continuum behaviour as Ly

increases. The boundary between these two regimes is shown to be a function of the

broadening of the Dirac spectrum of the nanoribbon. Additionally, we observe that

the nonlinear response in metallic acGNR is strongly dependent on the shape of the

spatial profile of the THz excitation field. By carefully choosing the spatial profile,

it is possible to optimize the third-order nonlinearities for a particular excitation
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frequency. In the results presented above, we present a detailed analysis of the features

of the nonlinear spectral response due to these mechanisms.

Finally, we note two recent reports of the synthesis of high quality, ultrathin

acGNR with widths Lx < 10 nm [48, 49]. The recent advent of this capability to

fabricate acGNR underscores the importance of a complete understanding of the

underlying nonlinear physics of these structures. AC transport in quasi 1D quantum

wires is crucial for high speed quantum wire based integrated circuits [104]. The

current work contributes to this understanding by demonstrating that acGNR have

large nonlinearities that can be optimized through careful choice of design parameters

such as the nanoribbon dimensions and the spatial profile of the excitation field.
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CHAPTER 5
TERAHERTZ THIRD ORDER NONLINEAR RESPONSE OF
METALLIC ARMCHAIR GRAPHENE NANORIBBON TO AN

ELLIPTICALLY-POLARIZED EXCITATION FIELD

1 In this chapter, we present a theoretical description of the third-order re-

sponse induced by an elliptically-polarized terahertz beam normally-incident on in-

trinsic and extrinsic metallic armchair graphene nanoribbons. Our results show that

using a straightforward experimental setup, it should be possible to observe novel

polarization-dependent nonlinearities at low excitation field strengths of the order of

104 V/m. At low temperatures the Kerr nonlinearities in extrinsic nanoribbons persist

to significantly higher excitation frequencies than they do for linear polarizations, and

at room temperatures, the third-harmonic nonlinearities are enhanced by 2-3 orders

of magnitude. Finally, the Fermi-level and temperature dependence of the nonlinear

response is characterized.

5.1 Introduction

Graphene is a flat monolayer of carbon atoms tightly packed into a 2D honey-

comb lattice. Graphene has emerged to be a very promising candidate for terahertz

(THz) applications, and opens up the possibility of graphene based devices for THz

optoelectronic and photonic applications [8]. Theoretical and experimental studies

show that unique properties of graphene, such as linear dispersion relation near the

Dirac point, high electron Fermi velocity, and tunable Fermi level lead to a strong non-

1This chapter has been submitted for publication.
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linear response in 2D graphene structures and suggest it is a very promising candidate

for THz applications [7,8,17–21,34,52,65,68,105]. This work opens up the possibility

of graphene based devices for THz optoelectronic and photonic applications [2, 8].

Following the first experimental of the study of absorption in the ellipsomet-

ric spectrum of graphene [106], the circular AC Hall effect [107–109], chiral edge

currents [110, 111], helicity-dependent photovoltaic Hall effect [8, 107] and electronic

chirality and berry phases [112] were observed by using circularly-polarized excita-

tion fields. Higher-order harmonic generation [105,113] in 2D graphene has also been

theoretically investigated, showing strong higher-order harmonics exists in graphene

with an applied circularly-polarized harmonic electric field. This work shows that

elliptically- or circularly-polarized light may be used to probe the unique nature of

graphene near the Dirac points, including effects such as harmonic generation, fre-

quency mixing, optical rectification, linear and circular photogalvanic effect, photon

drag, photoconductivity, coherently controlled ballistic charge currents, pseudospin,

chirality, and symmetry breaking [8, 105–109,111,112].

In general, graphene nanoribbons (GNRs) have two types of edges: armchair

edges (acGNR) and zigzag edges (zzGNR). Due to the the geometry and boundary

conditions [39,41,42], these two types of GNRs show distinct electronic characteristics

in the low energy regime. The linear and nonlinear response of GNRs due to a linearly-

polarized electric field were studied in [9,10,75,81,82,114,115]. The non-perturbative

DC conductance due to an applied circularly-polarized field in zzGNR and acGNR

[114, 115] was also investigated. However, there has been no investigation of the
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nonlinear response in metallic acGNR for an elliptically polarized applied electric

field.

In this chapter, we describe new results on the nonlinear response of intrinsic

and extrinsic metallic acGNR (mGNR) excited by a normally-incident, elliptically-

polarized THz electric field. GNR are metallic in the k · p approximation when the

longitudinal direction (ŷ) of the nanoribbon is parallel to the armchair edge and the

nanoribbon atomic width is N = (3M − 1) with M odd. In this case the lowest

sub-bands are linear in ky, and for sufficiently narrow mGNRs (Lx <∼ 20 nm), the

higher sub-bands are far enough away that their contributions to the THz nonlinear

conductance may be neglected. Most significantly, we show that at room temperature,

the third-order nonlinear conductance at 3ω is enhanced by 2−3 orders of magnitude

using a circularly-polarized (CP) THz field over the same conductance when the

excitation field is linearly-polarized (LP) [10]. We also show that the third-order

conductances at ω and 3ω exhibit odd symmetry in the polarization state, resulting in

current densities of opposite sign for opposite-handed elliptical polarizations. Finally,

we analyze the Fermi level and temperature dependence of these nonlinearities and

show that by varying the polarization state of the excitation field it is possible to

tune the nonlinearities in both sign and amplitude. This novel behavior suggests a

variety of applications in optical modulation, polarization switching, and harmonic

generation over the THz region of the optical spectrum.
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5.2 Model

Our k · p model employs Fourier analysis to solve the nonlinear Dirac equa-

tion using time-dependent perturbation theory in order to study the polarization-

dependent nonlinear response in the THz regime. The model is an extension of one

first applied by us in the context of graphene nanoribbons for the study of nonlin-

ear effects induced by LP THz fields [10, 81]. However, we emphasize that the work

presented below contains new physics as a result of the coupling between the polar-

ization state of the incident field and the chiral mGNR wavefunctions, and is not a

simple superposition of the previous description of LP THz excitations (although the

previous results do exist as special cases of the current work).

In the following, we analyze nonlinear harmonic generation at THz frequen-

cies induced by an elliptically-polarized beam normally-incident on a mGNR. The

polarization ellipse is characterized by major and minor axes that coincide with

the longitudinal and transverse axes of the nanoribbon. This polarization state

can be achieved experimentally by passing a ŷ-polarized beam through a cascade

of a half-wave plate oriented with its fast axis at an angle ϕ/2 with respect to

the polarization axis of the incident THz beam, and then through a quarter-wave

plate oriented with its principle axes parallel to the longitudinal (ŷ) and trans-

verse (x̂) axes of the mGNR. The corresponding electric field may be expressed as

E = [ix̂Ex + ŷEy] exp[−iωt] = E0 [ix̂ sin(ϕ) + ŷ cos(ϕ)] exp[−iωt].

We begin by writing the polarization state of an elliptically-polarized beam

with principal axes parallel to x̂ and ŷ. In the Coulomb gauge for a source-free
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region of constant scalar potential (∇φ = 0), the time-harmonic electric field turns

on adiabatically at t0 = −∞ and the magnetic vector potential is A = E/(iω). After

making the substitution, k(k′) → k(k′) + qA/~, we obtain a time and polarization-

state dependent Hamiltonian H near the Dirac points of the mGNR [10, 81]. The

Fourier expansion of the resulting perturbation wavefunction is written:

ψ(r, t;m) =
∞∑
l=0

ψ0(m, l) exp [i2πmy/Ly] exp[−iωlt] exp[−iϵt/~]

where m is the quantum number of ky, l is the harmonic order of the electric field,

and ψ0(m, l) is a spinor of order (m, l). Following Ref. [8,10,34,52,68], we obtain the

third order current density in the perturbation limit, with ωy = vF2πm/Ly:

J (3)
ν (ϕ, t) =

∑
αβγ

[
exp [−iωt] σ(3)

ναβγ(ω,−ω, ω)EαE
∗
βEγ

+ exp [−iωt] σ(3)
ναβγ(ω, ω,−ω)EαEβE

∗
γ (5.1a)

+ exp [−i3ωt] σ(3)
ναβγ(ω, ω, ω)EαEβEγ

]
+ c.c.

=e gs gv

∑
m

[
ψ0(m, 1)†

∂H

~∂kν
ψ0(m, 2) exp[−iωt] (5.1b)

+ψ0(m, 0)†
∂H

~∂kν
ψ0(m, 3) exp[−i3ωt]

]
N(ωy) + c.c.

=
[
g(3)ν (ω, ϕ) exp[−iωt] (5.1c)

+g(3)ν (3ω, ϕ) exp[−i3ωt]
]
E0 + c.c.

with the thermal factor defined as:

N(ωy) =
sinh

(
~|ωy|
kBT

)
cosh

(
EF

kBT

)
+ cosh

(
~|ωy|
kBT

) (5.2)

with ν = x, y indicating the induced optical current component in the ν̂ direction.

89



www.manaraa.com

5.3 Results and Discussion

The longitudinal Kerr conductance g
(3)
ν (ω, ϕ) and third-harmonic conductance

g
(3)
ν (3ω, ϕ) for infinitely-long mGNR:

g(3)y (ω, ϕ) = g0

[
f(ϕ,−2,−1)N

(ω
2

)
+ f(ϕ,−1,−3

2
)N(ω)

]
(5.3a)

g(3)y (3ω, ϕ, λ) = g0

[
f(ϕ,

1

2
,− 1

24
)N
(ω

2

)
− f(ϕ, 1,

5

6
)N(ω)

+f(ϕ,
1

2
,
7

8
)N

(
3ω

2

)]
(5.3b)

and the transverse third-order conductances:

g(3)x (ω, ϕ) = g0

[
f(ϕ, 1,−1

2
)N(ω)

]
(5.4a)

g(3)x (3ω, ϕ, λ) = g0

[
−f(ϕ,

1

2
,− 5

24
)N
(ω

2

)
+ f(ϕ, 1,

1

6
)N(ω)

−f(ϕ,
1

2
,
7

8
)N

(
3ω

2

)]
(5.4b)

where f(ϕ, a, b) = ηηx cos(ϕ)
[
a cos2(ϕ) + 2b sin2(ϕ)

]
, g0 = e2/(4~), Fermi level EF ,

ηx = (gsgvvF ) / (ωLx), and η = (e2E2
0v

2
F ) /(~2ω4). It is worth noting that for a

circularly-polarized excitation field, a symmetry-breaking occurs in 2D SLG that

allows second-harmonic generation to occur [8, 34, 105]. We will discuss how this

symmetry-breaking affects second-harmonic generation in mGNR in our future work.

In Eqs. (5.3a) and (5.4a), E0f(ϕ, a, b) may be split into two terms:

E0f(ϕ, a, b) = fA(ϕ, a)|Ey|2Ey + fB(ϕ, b)PcircEx,

where the radiation helicity Pcirc = i
[
Ey(iEx)

∗ − iExE
∗
y

]
= E2

0 sin(2ϕ) [110]. fA(ϕ, a)

defines the conductivity tensor element σ
(3)
νyyy and fB(ϕ, b) defines the sum of conduc-

tivity tensor elements
∑

yxx σ
(3)
νyxx, where

∑
yxx indicates the sum over the rotation

90



www.manaraa.com

of indices νyxx, νxyx, and νxxy. We summarize the tensor elements obtained from

Eqs. (5.3a) and (5.4a) in Table 5.1.

Table 5.1: Kerr conductivity tensor elements

single-photon (−ω/2 → ω/2)
conductivity element(s)

value
(×g0ηηx/E2

0)

σ
(3)
yyyy(ω,−ω, ω) −2

σ
(3)
yxxy(ω,−ω, ω) + σ

(3)
yyxx(ω,−ω, ω) −2

σ
(3)
yxyx(ω,−ω, ω) 0

σ
(3)
xyyy(ω,−ω, ω) 0

σ
(3)
xxxy(ω,−ω, ω) + σ

(3)
xyxx(ω,−ω, ω) +1

σ
(3)
xxyx(ω,−ω, ω) −1

two-photon (−ω → ω)
conductivity element(s)

value
(×g0ηηx/E2

0)

σ
(3)
yyyy(ω, ω,−ω) −1

σ
(3)
yxyx(ω, ω,−ω) + σ

(3)
yyxx(ω, ω,−ω) −2

σ
(3)
yxxy(ω, ω,−ω) −1

σ
(3)
xyyy(ω, ω,−ω) +1

σ
(3)
xxyx(ω, ω,−ω) + σ

(3)
xyxx(ω, ω,−ω) −2

σ
(3)
xxxy(ω, ω,−ω) +1

For the third-harmonic conductances, the splitting also holds for E0f(ϕ, a, b) =

fA(ϕ, a)E3
y + fB(ϕ, b)E2

xEy/2. We note that fA(ϕ, a) and fB(ϕ, b) are related to the

conductivity tensor elements in the same way as above. We summarize the contri-

butions to the third-harmonic conductivity tensor elements from the single-photon,

two-photon, and three-photon transitions obtained from Eqs. (5.3b) and (5.4b) in

Table 5.2.
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Table 5.2: Third-harmonic conductivity tensor

contributions

single-photon (−ω/2 → ω/2)
conductivity component

value
(×g0ηηx/E2

0)

σ
(3′)
yyyy +1/2

σ
(3′)
yxyx + σ

(3′)
yyxx + σ

(3′)
yxxy −1/12

σ
(3′)
xyyy −1/2

σ
(3′)
xxyx + σ

(3′)
xyxx + σ

(3′)
xxxy +5/12

two-photon (−ω → ω)
conductivity component

value
(×g0ηηx/E2

0)

σ
(3′)
yyyy −1

σ
(3′)
yxyx + σ

(3′)
yyxx + σ

(3′)
yxxy −5/3

σ
(3′)
xyyy +1

σ
(3′)
xxyx + σ

(3′)
xyxx + σ

(3′)
xxxy +1/3

three-photon (−3ω/2 → 3ω/2)
conductivity component

value
(×g0ηηx/E2

0)

σ
(3′)
yyyy +1/2

σ
(3′)
yxyx + σ

(3′)
yyxx + σ

(3′)
yxxy +7/4

σ
(3′)
xyyy −1/2

σ
(3′)
xxyx + σ

(3′)
xyxx + σ

(3′)
xxxy −7/4

Here σ
(3′)
ναβγ denotes σ

(3)
ναβγ(ω, ω, ω)

To simplify the discussion, in the following we present results for mGNR20,

the metallic acGNR N = 20 atoms wide, for an applied field strength E0 = 10 kV/m.

From Eqs. (5.3) and (5.4), we see that illumination of an unbiased, infinitely-long

mGNR by a THz harmonic electric field results in a nonlinear response that is strongly

dependent on the polarization state of the applied field. Fig. 5.1 illustrates the po-

larization dependence of the longitudinal and transverse Kerr and third-harmonic

nonlinear conductances at T = 0 K and 300 K for intrinsic mGNR20.
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Figure 5.1: Kerr and third-harmonic conductances of mGNR20 as a function of the

incident THz electric field polarization state (see top inset) for: (a) T = 0 K, and (b)

T = 300 K. f = 1 THz, E0 = 10 kV/m.

For CW (σ+) and CCW (σ−) CP, i.e, ϕ = 45◦ and 135◦, the third-order

conductances are antisymmetric. The shape of the conductance is a superposition

of the contribution from the Ey and Ex components. The overall dependence of the

third order current component J
(3)
ν (ω0) is of the form [10,52],

J (3)
ν (ω0) = g(3)ν (ω0, ϕ)E0 = gν,A(ω0)Ey + gν,B(ω0)Ex (5.5)

The first term, gν,A ∝ e2E2
y/(~2ω4), and agrees with [8, 34, 52, 68]. The second term,

gν,B ∝ Pcirc (see e.g. [110,111]). Due to the current operator used, there is no analog of

left or right handedness for the carriers in mGNR [36]. The direction of the optically

induced third order current results from the interference between the local current

density excited by the elliptical polarization of the field, or the radiation helicity

Pcirc, and the isospin of the carriers [8,36,110,112]. Finally, for the LP cases ŷ and x̂,

(ϕ = 0◦ and ϕ = 90◦) respectively, contribution from the second term vanishes [112]
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and we recover the results reported previously [10].

In Fig. 5.2 we compare the longitudinal and transverse Kerr and third-harmonic

conductances as a function of the Fermi level EF at T = 0 K. For EF well below the

optical phonon energy (∼ 200 meV), and a 1 THz excitation frequency for a LP field

in the ŷ direction (ϕ = 0◦) and σ+ CP (ϕ = 45◦) we see thresholding behavior of the

nonlinear conductances for the direct interband transition at low temperature [10].

The three critical frequencies for EF/h: 0.5 THz, 1 THz and 1.5 THz correspond to

turning off the thermal distribution at ω/2, ω and 3ω/2 [10]. These frequencies are in-

dependent of the polarization states ϕ, and are only functions of gν,A(ω0) andgν,B(ω0)

in Eq. (5.5).

Figure 5.2: Longitudinal and transverse components of the Kerr and third-harmonic

conductances for extrinsic mGNR20 as a function of the Fermi level EF and incident

field polarization state. For this plot f = 1 THz, E0 = 10 kV/m, and T = 0 K.
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In the interest of brevity, we note briefly that the overall temperature depen-

dence of all non-zero extrinsic conductances show that the nonlinearity persists even

up to room temperature. Further, the curves asymptotically approach the intrinsic

mGNR conductance for a given polarization state as the temperature increases. It

is also interesting to note that the transverse Kerr conductances are identically zero

for CP, independent of the Fermi level and temperature, in qualitative agreement

with [115]. This may be understood as the cancellation of the contribution from Ey

and Pcirc in Eq. (5.4a) for CP.

Fig. 5.3 illustrates the excitation-frequency (2πf = ω) dependence of the Kerr

and third-harmonic conductances for both ŷ LP (ϕ = 0◦) and σ+ CP (ϕ = 45◦)

excitation fields in extrinsic mGNR20 (EF/h = 0.7 THz). At T = 0 K (Figs. 5.3a

and 5.3c) both CP Kerr conductance components behave in a manner qualitatively

similar to the LP result for the longitudinal component of the conductance while

the transverse component of the LP conductance is zero. However the CP third-

harmonic conductances behave quite differently from their LP counterparts. Whereas

the low-temperature LP conductance components are bandlimited (nonzero over

2EF/3h < f < 2EF/h), the transverse CP conductances persist to significantly

higher frequencies, reducing to |g|/g0 = 0.1 at approximately 2.7 THz. At T = 300 K

(Figs. 5.3b and 5.3d), another behavior is noted: while the CP and longitudinal com-

ponent of the LP Kerr conductance follow a similar decay envelope with increasing

excitation frequency, both CP third-harmonic conductance components are enhanced

by nearly three orders of magnitude over their LP counterparts at f = 1 THz, and
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this enhancement persists to higher frequencies and is still nearly two orders of mag-

nitude at f = 3 THz. The enhancement for the transverse component of the CP

third-harmonic conductance is observed to be slightly stronger than that for the lon-

gitudinal component of the CP third-harmonic conductance.

Figure 5.3: Excitation frequency (2πf = ω) dependence of the components of nonlin-

ear Kerr and third-harmonic conductances for extrinsic mGNR20 (EF/h = 0.7 THz):

a) longitudinal conductance at T = 0 K, b) longitudinal conductance at T = 300 K,

c) transverse conductance at T = 0 K, and d) transverse conductance at T = 300 K.

For all plots, E0 = 10 kV/m. Note that for all temperatures, the CP transverse Kerr

conductance is identically zero.
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5.4 Conclusions

In conclusion, we report calculations describing the third-order nonlinear re-

sponse of both intrinsic and extrinsic mGNR to an elliptically-polarized THz electric

field. We show that the resulting Kerr conductances for extrinsic mGNR persist to

significantly higher excitation frequencies at low temperature, and at room tempera-

ture, the CP third-harmonic conductances are enhanced by 2-3 orders of magnitude

over their counterparts excited with only LP. Further, we describe the Fermi-level

and temperature dependence of these nonlinearities. The enhancement in spectral

range and magnitude for these nonlinearities suggests that they may exhibit wide

applicability in THz devices excited with elliptically-polarized THz electric fields.

The recent synthesis of ultrathin mGNR with widths Lx < 10 nm [48, 49],

coupled with the proposed experimental setup described in this chapter, suggest that

experimental measurement of the THz nonlinear response in thin mGNR should be

possible at relatively low excitation field strengths. Notably, the enhancement of the

third-order third-harmonic nonlinearity with small changes in Fermi level and applied

CP excitation field at room temperature indicates that mGNR may provide the basis

for developing a sensitive graphene-based detector, broadband modulator, or source

over a wide range of temperatures.

97



www.manaraa.com

CHAPTER 6
TERAHERTZ THIRD ORDER NONLINEAR RESPONSE OF

GAPPED ARMCHAIR GRAPHENE NANORIBBON

1 In this chapter, we use time dependent perturbation theory to study the

terahertz nonlinear response of gapped intrinsic and extrinsic nearly-metallic arm-

chair graphene nanoribbons of finite length under an applied electric field. Generally,

the nonlinear conductances exhibit contributions due to single-photon, two-photon,

and three-photon processes. The interference between each of these processes results

in remarkably complex behavior for the third-order conductances, including quan-

tum dot signatures that should be measurable with a relatively simple experimental

configuration. Notably, we observe sharp resonances in the isotropic third-order re-

sponse due to the Van Hove singularities in the density of states at one-, two-, and

three-photon resonances. However, these resonances are absent in the anisotropic

third-order response; a result of the overall symmetry of the system.

6.1 Introduction

Graphene is a flat monolayer of carbon atoms arranged in a 2D honeycomb

lattice. Unique properties of graphene, such as a linear dispersion relation near the

Dirac point, high electron Fermi velocity, and tunable Fermi level lead to strong

nonlinear response in various 2D graphene structures [6–8,16–21,32,33,52,57,63–65].

These studies suggest that graphene is a very promising candidate for graphene based

1This chapter has been submitted for publication.
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terahertz (THz) optoelectronic and photonic applications [2, 8].

In general, graphene nanoribbons (GNRs) have two different edge states: arm-

chair GNR (acGNR), where the armchair edge is parallel to the longitudinal axis of

the nanoribbon, and zigzag GNR (zzGNR) where the zigzag edge is parallel to the

longitudinal axis of the nanoribbon. Theses two types of GNR show distinct elec-

tronic properties [39–42]. Thin (sub-20 nm) GNR may be treated as quasi-1D quan-

tum wires [22]. All experimental reports on thin high quality GNR show that they

have an energy gap, including acGNR that are metallic in the ideal k · p approxima-

tion [5,44–49] (in what follows, we label ideal gapless metallic acGNR as mGNR and

gapped nearly-metallic acGNR as m∗GNR). The energy gap of these m∗GNR is in-

versely proportional to their width [44–47]. Several theoretical models have predicted

the energy gap based on different edge terminations and calculation methods [23–29].

Recently, the linear and nonlinear response of GNR due to an applied linearly-

polarized time-harmonic excitation electric have been studied [9,10,75,76,81,82,114,

115]. However to this point, there has been no report on the nonlinear THz response of

m∗GNR. Refs. [32–34] suggest that nonlinearities may increase in gapped 2D graphene

with small band gap openings and thus it is important to study the effect of a gap

on the THz nonlinear response in thin m∗GNR.

In this chapter, we describe new results on the nonlinear THz response of

intrinsic and extrinsic thin m∗GNR excited by a normally-incident, linearly-polarized

THz electric field. acGNR are metallic in the ideal k · p approximation when the

longitudinal direction of the nanoribbon is parallel to the armchair edge and the
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nanoribbon atomic width is N = (3M − 1), with M odd. In this case the lowest

sub-bands are linear in the longitudinal axis ky, and for sufficiently narrow m∗GNR

(Lx <∼ 20 µm), the higher sub-bands are far enough away that their contribution to

the THz nonlinear conductance may be neglected. Most significantly, we show that

the isotropic third-order nonlinear conductance is enhanced in m∗GNR over the same

conductance in mGNR when the excitation field is linearly-polarized (LP) [10,81] for

frequencies above the energy gap resonance. We also show that the anisotropic third-

order conductances exhibit different behaviour than the isotropic results. Finally, we

analyze the Fermi level and temperature dependence of these nonlinearities. This

novel behavior suggests a variety of applications over the THz region of the optical

spectrum.

6.2 Model

Nearly-metallic acGNR are predicted to have a small band gap inversely pro-

portional to their width Lx [25, 26]. However, the energy gaps reported in [5, 23–29,

44–49] are functions of the different fabrication techniques, edge terminations and

calculation methods used in these studies. We use the energy gap reported in [25]

for thin m∗GNR, as this band gap, induced by the asymmetry in the edge states,

creates an onset energy offset ∓Eg/2 in the A, B sublattice respectively in the low

energy regime [32–34]. This choice of energy gap has also been used to simulate

the behavior of thin acGNR-based FETs as well [116–118], and agrees with the non-

parabolic quantum-based simulation of thin acGNR FETs as well [117]. An electric
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field strength of the order 1 GV/m has been predicted to modulate the energy gap Eg.

The critical field strength derived from our previous work [10] for ideal thin mGNR,

is of the order of 10− 100 kV/m, much smaller than 1 GV/m [25]. As a result, we do

not expect the excitation field to induce a significant change in the thin m∗GNR gap

due to the small potential variation along the zigzag edge (x̂ direction), while at the

same time, we expect the excitation field to induce strong THz nonlinearities.

Thus, we model the bandgap versus width Lx = Na0/2 for m∗GNR in the

presence of an applied electric field as Eg = 0.04 eV/Lx(nm) [25]. Defining Egap =

2~Ωg = 2~vFk∆, we obtain Ωg = vFk∆ = 39.325 THz/N where N is the nanoribbon

atomic width. Following the k · p model for gapped 2D SLG [32, 33], and GNR

[41, 42], the time-independent unperturbed Hamiltonian for m∗GNR in the absence

of intravalley and intervalley scattering may be written:

H0 = ~vF
(
σ · k− k∆σz 0

0 σ · k′ − k∆σz

)
(6.1)

with σ = σxx̂+σyŷ, k(k′) = kn(−kn)x̂+kyŷ, k(k′) =
(
k2n + k2y

)1/2
, k0 = (k2 + k2∆)

1/2

and θn = tan−1(kn/ky). The wavefunction for the unperturbed Hamiltonian H0 of

m∗GNR becomes:

ψn,s =
A

k
exp(ikyy)


exp [i (knx− θn)] (k0 − sk∆)

s k exp(iknx)
− exp [-i (kxx+ θn)] (k0 − sk∆)

s k exp(-iknx)

 (6.2)

Normalizing the wavefunction over the entire nanoribbon [41,42], we obtain:

A = (2LxLy)
−1/2 [1 + (k0 − sk∆)2 /k2

]−1/2
(6.3)

We note that where the gap Eg → 0, Eq. (6.2) reduces to the Brey-Fertig wavefunction

used in Ref. [41,42].
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In m∗GNR, when kx,n = 0, the energy spectrum is ϵ = s~ω0, with ω0 =[
ω2
y + Ω2

g

]1/2
, ωy0 = 2πvF/Ly and ωy = vFky = mωy0. In the Coulomb gauge for

a region of constant potential (∇φ = 0), an electric field E = ŷEy exp(−iωt) that

turns on adiabatically at t = −∞ gives rise to a vector potential A = E/(iω). After

making the Peierls substitution, k(k′) → k(k′) + eA/~ into Eq. (6.1), we obtain a

time dependent Hamiltonian H near the Dirac points of the m∗GNR [10, 81]. The

Fourier expansion of the resulting perturbation wavefunction is written:

ψ(r, t;m) =
∞∑
l=0

ψ0(m, l) exp[i
ωy y

vF
] exp[-i (

ϵ

~
+ ω l) t] (6.4)

where m is the quantum number of ky, l is the harmonic order of the electric field, and

ψ0(m, l) is a spinor of order (m, l). Following the model of gapped 2D SLG [32] and our

previous studies of ideal mGNR [10, 81], the THz third-order nonlinear conductance

of finite-length, thin m∗GNR, with an applied ŷ linearly-polarized electric field, in the

relaxation-free approximation, and no coupling to the spatial profile of the applied

electric field, can be expanded as:

g(3)yν (ω) =
2∑
l=1

∑
m

f (ω)
yν (ω0,

ωl

2
)NΘ(ω0)δ(ω0 −

ωl

2
)ωy0 (6.5a)

g(3)yν (3ω) =
3∑
l=1

∑
m

f (3ω)
yν (ω0,

ωl

2
)NΘ(ω0)δ(ω0 −

ωl

2
)ωy0 (6.5b)

with the thermal factor in the presence of the gap Ωg:

NΘ(ω0) =
sinh

(
~vFω0

kBT

)
cosh

(
~Ω
kBT

)
+ cosh

(
~vFω0

kBT

)Θ(ω0 − Ωg) (6.6)

where the Fermi level EF = ~Ω, ν = x, y is the direction of the current component,

and f
(ωs)
yν (ω0,

ωl
2

) is the coefficient associated with the corresponding δ(ω0− ωl
2

) term in
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the expansion of the expression for third-order conductance, and Θ(ω) is the Heaviside

step function.

After some algebra, the isotropic third-order conductances for infinitely long

m∗GNR from Eq. (6.5) are obtained:

g(3)yy (ω) =G (16,−4,−2)
(
1 − 4γ2

)−1/2
NΘ(

ω

2
)

+G (0,−4,−1)
(
1 − γ2

)1/2
NΘ(ω) (6.7a)

g(3)yy (3ω) =G

(
−4

3
,
1

3
,
1

2

)(
1 − 4γ2

)−1/2
NΘ(

ω

2
)

+G

(
0,−4

3
,−1

)(
1 − γ2

)1/2
NΘ(ω) (6.7b)

+G

(
−4

3
,
5

3
,
3

2

)(
9 − 4γ2

)−1/2
NΘ(

3ω

2
)

where G(z2, z1, z0) = g0ηηx (z2γ
4 + z1γ

2 + z0), g0 = e2/(4~), ηx = (gsgvvF ) / (ωLx),

η = (e2E2
0v

2
F ) /(~2ω4) and γ = Ωg/ω. Here gs = 2 (gv = 2) is the spin (valley)

degeneracy. We note that in Eq. (6.7), the expression for the isotropic Kerr conduc-

tance contains terms due to both single-photon (NΘ(ω/2)) and two-photon (NΘ(ω))

transitions, and the expression for the isotropic third-harmonic conductance contains

terms due to single-photon, two-photon, and three-photon (NΘ(3ω/2)) transitions.

Similarly, the anisotropic third-order conductances for infinitely long m∗GNR

from Eq. (6.5) are expressed as:

g(3)yx (ω) =G (0, 0, 1)
(
1 − γ2

)1/2
NΘ(ω) (6.8a)
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g(3)yx (3ω) =G

(
0,

1

3
,−1

2

)(
1 − 4γ2

)1/2
NΘ(

ω

2
)

+G

(
0,−4

3
, 1

)(
1 − γ2

)1/2
NΘ(ω) (6.8b)

+G

(
0,

1

3
,−1

6

)(
9 − 4γ2

)1/2
NΘ(

3ω

2
)

In Eq. (6.8), the expression for the anisotropic Kerr conductance contains only a

term due to the two-photon (NΘ(ω)) transition because the single-photon transition

is not allowed due to the symmetry of the wavefunctions. However, the expression

for the anisotropic third-harmonic conductance contains single-photon, two-photon,

and three-photon terms.

Following Ref. [81,101–103], we employ a Gaussian broadening model to study

the impact on the nonlinear conductance due to spectral broadening of m∗GNR

in the THz regime. We use the relaxation time τ = 25 ps [88] for m∗GNR, with

the assumption τ remains a constant in the THz regime, invariant of the temper-

ature and the applied field strength. We also introduce the illumination length

L, characterizing the coupling between the spatial profile of the applied electric

field and the energy spectrum [81] of the m∗GNR. We use the Gaussian kernel,

Zg(ω0, ω) = (
√
π Γω)

−1
exp [−(ω0 − ω)2/Γ2

ω], where Γω = 2π
(

2τ
√

ln 2
)−1

and fΓ =

Γω/(2π) = 0.024 THz, to replace the Dirac delta function in Eq. (6.5). Using this

framework, the third-order conductances for finite-length m∗GNR are expressed as:

g̃(3)yν (ω,Ly, L,Γω) =
2∑
l=1

∑
m

f̃ (ω)
yν (ω0,

ωl

2
)Zg(ω0,

ωl

2
)ωy0 (6.9a)

g̃(3)yν (3ω,Ly, L,Γω) =
3∑
l=1

∑
m

f̃ (3ω)
yν (ω0,

ωl

2
)Zg(ω0,

ωl

2
)ωy0 (6.9b)
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where f̃
(ω0)
yν (ω0,

ωl
2

) = f
(ω)
yν (ω0,

ωl
2

)NΘ(ω0) sinc2
(
ω0L
2vF

)
. Our previous result reported

in [81] exists as a special case of the current work with the assumption Ωg → 0.

Furthermore, when fΓ → 0, due to the local current density operator qvFσx,yδ(r−rop)

[10,32,52,81] used in this work, we assume graphene carriers at rop interact only with

the incoming photon field at rop. In this case, the third-order conductances calculated

from Eq. (6.9) reduce to Eq. (6.5).

6.3 Results and Discussion

Figure 6.1: Direct interband transition for energetically-allowed third-order processes

in intrinsic m∗GNR: a) only the third-harmonic three-photon transition is allowed

(Ωg > ω ≥ 2Ωg/3); b) third-harmonic two-photon and three-photon transitions are

allowed and Kerr two-photon transition is allowed (2Ωg > ω ≥ Ωg); and c) third-

harmonic single-photon, two photon, and three-photon transitions are allowed and

Kerr single-photon and two-photon transitions are allowed (ω ≥ 2Ωg).
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To simplify the discussion, we present results for m∗GNR20 (acGNR of atomic

width N = 20), and we neglect the effects of the spatial profile of the applied field

on the nonlinear response (L → 0), although the effect of the illumination length is

multiplicative with the conductance, and so can be easily incorporated into our model

if desired [81].

For all calculations, we assume an applied field strength Ey = 50 kV/m and

broadening parameter fΓ = 0.024 THz (fΓ → 0) for finite (infinite) length m∗GNR.

Further, we use the terms Kerr (third-harmonic) conductance to describe a con-

ductance at ω (3ω) respectively and the terms isotropic (anisotropic) to describe a

conductance parallel (orthogonal) to the direction of the applied THz electric field.

In what follows, we summarize the characteristics of the nonlinear conductances for

all combinations of the ribbon length Ly and Fermi level EF , given in (6.9).

Fig. 6.1 illustrates the energetically-allowed transitions for various excitation

frequency ranges [34] of infinite-length intrinsic m∗GNR. For frequencies below the

three-photon transition (ω < 2Ωg/3), all third-order transitions are energetically pro-

hibited. For frequencies above the three-photon transition but below the two-photon

transition (Ωg > ω ≥ 2Ωg/3), Fig. 6.1a shows that only the three-photon component

contributes to the third-harmonic conductance. Contributions to the Kerr conduc-

tance are energetically disallowed in this frequency range. For frequencies above the

two-photon transition (2Ωg > ω ≥ Ωg), Fig. 6.1b shows that both two-photon and

three-photon components contribute to the third-harmonic conductance, whereas for

the Kerr conductance, only the two-photon component contributes. And finally, for
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frequencies above the single-photon transition threshold (ω ≥ 2Ωg), single-photon,

two-photon, and three-photon components contribute to the third-harmonic conduc-

tance, and two-photon and single-photon components contribute to the Kerr con-

ductance. We emphasize here that although these components may be energetically

allowed, some transitions are blocked due to the symmetry of the wavefunctions and

therefore, do not contribute to the conductances (see Eqs. (6.7) and (6.8)). We discuss

this point in more detail below.

Fig. 6.2 compares the isotropic and anisotropic third-order conductances for

infinitely-long intrinsic mGNR20 and m∗GNR20 as a function of excitation frequency.

In contrast to mGNR, where electrons near the Dirac points behave like massless Dirac

fermions, in m∗GNR, particles in the low energy regime behave like massive Dirac

fermions where the non-zero k∆ term in Eq. (6.1) is the origin of the mass term in

the energy spectrum.

Figure 6.2: Magnitude of the isotropic and anisotropic third-order nonlinear conduc-

tances for infinitely-long intrinsic mGNR20 and m∗GNR20 as a function of excitation

frequency f = ω/(2π). a) T = 0 K; and b) T = 300 K. For all plots, the broadening

parameter fΓ = 0.
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In Fig. 6.2a we plot the nonlinear conductances for T = 0 K. The gapped Kerr

conductances are zero for ω < Ωg by virtue of energy conservation, as the two-photon

transition is prohibited. Above this threshold, the gapped Kerr conductances are

always smaller than their ideal counterparts. However, as the excitation increases

further, we observe a second threshold with a sharp resonance in the isotropic Kerr

conductance exactly at the gap energy ω = 2Ωg. This is a result of the Van Hove

singularity in the density of states at 2Ωg. The anisotropic Kerr conductance does not

exhibit a similar resonance. This difference in behavior is a result of the chiral nature

of the m∗GNR wavefunction. For excitation frequencies above the second threshold,

the gapped Kerr conductances asymptotically approach their ideal counterparts for

ω ≫ 2Ωg. Fig. 6.2b illustrates the behavior of the nonlinear conductances at room

temperature where for the gapped Kerr conductances, qualitatively similar behavior

to the T = 0 K results is observed.

For the gapped third-harmonic conductances plotted in Fig. 6.2, the behavior is

quite different from the Kerr conductances. The gapped third-harmonic conductances

are zero for ω < 2Ωg/3 due to energy conservation, as the three-photon transition is

prohibited below this threshold. For ω ≥ 2Ωg/3, there are sharp resonances in the

isotropic third-harmonic nonlinearity at ω = 2Ωg/2 (three-photon resonance) and at

ω = 2Ω (single-photon resonance), again due to the Van Hove singularity at the band

edge. As with the Kerr case discussed above, these resonances do not exist in the

gapped anisotropic third-harmonic conductance curves as a result of the chirality. We

also observe two antiresonances in the region above the three-photon threshold for the
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gapped isotropic third-harmonic conductance. These antiresonances exist at both low

and room temperatures. The antiresonance at ∼ 1.45 THz is a result of a zero-crossing

in the G(−4/3, 5/3, 3/2) polynomial of Eq. (6.7b) and is independent of temperature,

whereas the antiresonance above 2 THz is a result of the (temperature dependent)

cancellation of the 3ω/2 and ω terms in Eq. (6.7b). Finally, we observe that generally,

the gapped third-harmonic conductances are significantly enhanced in magnitude

when compared with their ideal counterparts. A similar enhancement of the isotropic

third-order nonlinearity has also been predicted in gapped 2D graphene [32,33].

In Fig. 6.3 we plot the magnitude of the isotropic and anisotropic third-order

conductances for m∗GNR as a function of nanoribbon length Ly and excitation fre-

quency ω at T = 0 K. Figs. 6.3a and 6.3b show the gapped isotropic and anisotropic

Kerr conductances respectively. The single-photon and two-photon resonances with

the bandgap are clearly observable for the isotropic conductance. These resonances

arise due to the state at ky = 0 which does not change energy, and are absent in

the anisotropic conductances due to wavefunction symmetry. For both isotropic and

anisotropic Kerr conductances above the two-photon resonance (ω/Ωg ≥ 1), a series

of peaks are observed as a function of Ly. These peaks correspond to the excitation

frequency ω coming into and out of resonance with the quantized ky = 2πm/Ly states

as the length of the nanoribbon varies. For values of ω quite close to the two-photon

resonance, the period of the peaks as a function of Ly is large, due to the hyperbolic

character of the energy spectrum near the band edge. As the excitation frequency

increases, the period of the peaks in Ly decreases. Above the single-photon resonance
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(a) (b)

(c) (d)

Figure 6.3: Amplitude of the isotropic and anisotropic third-order nonlinear con-

ductances in intrinsic m∗GNR as a function of the nanoribbon length Ly and the

normalized excitation frequency ω/Ωg: a) isotropic Kerr conductance; b) anisotropic

Kerr conductance; c) isotropic third-harmonic conductance; and d) anisotropic third-

harmonic conductance. For all plots, the broadening parameter fΓ = 0.024 THz.
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at ω/Ωg ≥ 2, the gapped isotropic conductance displays peaks with both large and

small periods in Ly due to the presence of both single-photon and two-photon terms

in the expression for the conductance. The isotropic conductance peaks display a

more complex behavior due the fact that both resonances contribute to the conduc-

tance peaks through the ω/2 and ω terms in the expression for the conductance.

The anisotropic Kerr conductance exhibits a response due only to the two-photon

transition. Due to the symmetry of the wavefunctions, the contribution from the

single-photon transition is three orders of magnitude or more below the contribution

from the two-photon transition when broadening is included in the model, and is

not allowed in the relaxation-free approximation. As a result, only the two-photon

transition contributes significantly to the conductance. Finally, as Ly → ∞, the peak

period shortens and the conductance converges to a smooth curve as the quantized

ky states form a continuum.

Figs. 6.3c and 6.3d illustrate similar behavior for the third-harmonic conduc-

tances, with single-photon, two-photon, and three-photon resonances visible for the

gapped isotropic conductance and a superposition of various peak periods due in gen-

eral to contributions from each of the resonances for the conductances as a function

of Ly for a particular frequency. The universal antiresonance discussed above for the

isotropic third-harmonic conductance is clearly-observable in this plot as well.

In Fig. 6.4 we plot the Fermi-level dependence of the ideal (Ly → ∞) extrinsic

gapped third-order conductances at T = 0 K. As the magnitude of the Fermi level in-

creases, the nonlinear conductances exhibit a thresholding behavior that results from
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state blocking. Fig. 6.4a shows the contributions from the ω/2 and ω terms for the

gapped isotropic Kerr conductance; Fig. 6.4b shows that for the gapped anisotropic

Kerr conductance, only the ω term contributes; Figs. 6.4c and 6.4d show that for the

gapped isotropic and anisotropic third-harmonic conductances, the ω/2, ω, and 3ω/2

terms all contribute.

(a) (b)

(c) (d)

Figure 6.4: Amplitude of the third-order conductances (A.U.) of m∗GNR at T = 0 K

as a function of the normalized Fermi level Ω/Ωg and normalized frequency ω/Ωg:

a) isotropic Kerr conductance; b) anisotropic Kerr conductance; c) isotropic third-

harmonic conductance; and d) anisotropic third-harmonic conductance. For all plots,

L = 0 and Γω = 0.
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These thresholds may be determined using the following expression:

ω

Ωg

Θ

(
ω

Ωg

− 2

l

)
=

2

l

∣∣∣∣ Ω

Ωg

∣∣∣∣ (6.10)

(a) (b)

(c) (d)

Figure 6.5: Density plot of of the third-order conductance of gapped mGNR as a

function of Ω and T . The magnitude are A.U. a) −g(3)yy (2Ωg), b) −g(3)yy (2Ωg/3), c)

g
(3)
yx (Ωg), and d) g

(3)
yx (2Ωg/3). For all plots, L = 0, and Γω → 0.

In order to optimize the nonlinear conductance enhancement for the third-

order conductance for gapped mGNR under all temperature, we plot the tempera-

ture and Fermi level dependences on the gapped mGNR for various pumping fre-

quency in Fig. 6.5. In the interest of brevity, we only show the following pump
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frequencies for third-order conductance, ω = 2Ωg(Ωg) for the isotropic (anisotropic)

Kerr-conductance, and ω = 3Ωg/2 for the isotropic (anisotropic) third-harmonic con-

ductance. The following features can be observed: (i) hot spots for Ω < Ωg at low

temperature; (ii) cold belts for Ω > Ωg at low temperature; and (iii) a diffusive region

for all Ω at high temperature. For feature (i), the hot spots are a direct consequence

of the low temperature enhancement of the gapped nonlinear conductance at the

resonance frequency of the energy gap. Such a feature is also observed in Figs. 6.2

and 6.4 and agrees with Ref. [32,33] for the interband transition of gapped 2D SLG.

For feature (ii), the cold belts are in the forbidden region as indicated in Fig. 6.4

since there is no allowed state that can make the direct interband transition in the

belts region. For feature (iii), the diffusive region is the direct result of the behavior

of the thermal factor at higher temperature. Deeper charge carriers can be involved

in the optical absorption in the forbidden region Ω ≥ Ωg at 0 K due to the availability

of higher thermally evacuated states [32]. Thus for higher temperature, we see the

conductance increases for Ω ≥ Ωg. Furthermore, at high temperature, due to the

thermal broadening for the massive Dirac fermions near the conduction and valence

band edges, the Van Hove singularity at low temperature becomes weaker [10,32], and

we see the conductance declines for Ω ≤ Ωg at higher temperature. In summary, from

Fig. 6.5, we propose that the optimum choice of Fermi level is for Ω = EF/~ ≤ Ωg.

Fig. 6.6 illustrates the overall impact of the effects we have discussed above

on the magnitude of the third-order Kerr and third-harmonic conductances. In Figs.

6.5a (T = 0 K) and 6.6b (T = 300 K), we plot the isotropic Kerr and third-harmonic
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conductances for several values of nanoribbon length Ly as a function of excitation

frequency. The curves exhibit signatures that depend strongly on the allowed tran-

sitions and polynomial amplitudes that contribute to each conductance component.

Figure 6.6: Magnitude of the third-order nonlinear conductances in m∗GNR20 for var-

ious ribbon length and temperatures as a function of excitation frequency f = ω/2π:

a) isotropic Kerr and third-harmonic conductances at T = 0 K; b) isotropic Kerr and

third-harmonic conductances at T = 300 K; c) anisotropic Kerr and third-harmonic

conductances at T = 0 K; and d) anisotropic Kerr and third-harmonic conductances

at T = 300 K. For all plots, the Fermi level Ω/2π = 1 THz and broadening parameter

fΓ = 0.024 THz (fΓ = 0) for finite (infinite) length m∗GNR20.
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For example, the antiresonance at f = ω/2π = 1.465 THz in the third-harmonic con-

ductance results from the zero in the polynomial G(−4/3, 5/3.3/2) that appears in the

expression for the three-photon term in the third-harmonic conductance Eq. (6.7b).

This antiresonance is universal (not temperature or length dependent) and can also

be observed in Figs. 6.2 and 6.3c. There is also a second antiresonance that exists

in the Ly → ∞ third-harmonic conductance above the two-photon threshold that is

temperature dependent. This antiresonance is a result of the exact cancellation of the

two-photon and three-photon terms in Eq. (6.7b), and is temperature-dependent due

to the different thermal factors present in each term. For finite Ly the exact cancella-

tion does not occur, and we do not observe this antiresonance in the third-harmonic

conductance.

The oscillations present in both the Kerr and third-harmonic conductances

as a function of Ly result from the discrete states in ky = 2πm/Ly moving in and

out of resonance with the excitation frequency f = ω/2π as the length changes. For

excitation frequencies above the three-photon threshold but below the two-photon

threshold (Ωg > ω ≥ 2Ωg/3), the oscillation period lengthens smoothly as a func-

tion of excitation frequency in a manner consistent with the results presented in

Fig. 6.3c. Above the two-photon threshold (2Ωg > ω ≥ Ωg), the oscillations in the

third-harmonic conductance are more complex, resulting from the interference due to

the superposition of both the three-photon and two-photon conductance components.

Above the single-photon threshold (ω ≥ 2Ωg), the third-harmonic conductance oscil-

lations are even more complex, resulting from interference between the three-photon,
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two-photon, and single-photon components of the conductance. Such behavior is also

consistent with the results presented in Fig. 6.3c.

Oscillatory behavior similar to that described above is observed in all four

third-order conductance components. The anisotropic third-harmonic conductance

component exhibits the same three qualitatively distinct regimes as does the isotropic

third-harmonic conductance. The isotropic Kerr conductance exhibits two oscillation

regimes for frequencies above the two-photon and single-photon thresholds. However,

due to the chiral symmetry of the wavefunctions, for the anisotropic Kerr conductance,

the contribution from the single-photon transition is at least three orders of magnitude

below the contribution from the two-photon transition when broadening is included

in the model, and is not allowed in the relaxation-free approximation. As a result,

only the two-photon transition contributes significantly to the conductance in this

case as well.

It is also useful to point out here that, for a given excitation frequency, it should

be possible to engineer the band gap and Fermi level, together with the applied field

spatial profile to shift away the antiresonances in the third-harmonic conductance [81].

The band gap may also be tuned by changing terminations or by slightly twisting the

ribbon [28].

6.4 Conclusion

In conclusion, we have calculated the third-order THz conductances in gapped

extrinsic and intrinsic m∗GNR using a time-dependent perturbation analysis of the
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k · p model. Generally, the nonlinear conductances exhibit contributions due to

single-photon, two-photon, and three-photon processes. The interference between

each of these processes results in remarkably complex behavior for the third-order

conductances, including quantum dot signatures that should be measurable with a

relatively simple experimental configuration. Notably, we observe sharp resonances

in the isotropic third-order response of m∗GNR with infinite length due to the Van

Hove singularities in the density of states at one-, two-, and three-photon resonances,

and similar resonances for m∗GNR of finite length due to the fixed state at ky = 0.

However, these resonances are absent in the anisotropic third-order response; a result

of the overall symmetry of the system. We also map the amplitude of the third-order

conductances as a function of Fermi level and bandgap, and determine a general

expression for their existence thresholds in the presence of state blocking.

The successful synthesis of ultrathin acGNR with widths Lx < 10 nm [48,

49] suggest that experimental measurement of the THz nonlinear response in thin

m∗GNR in the ballistic and quasi-ballistic regimes should be possible at relatively low

excitation field strengths with response in some cases greater than that predicted for

ideal mGNR. Our results indicate that m∗GNR may provide the basis for developing

a variety of useful THz devices over a wide range of temperatures and that by careful

design of the gap energy (which is a function of m∗GNR width), the nonlinear response

may be optimized for a particular desired excitation frequency range.
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CHAPTER 7
NONLINEAR THZ RESPONSE OF METALLIC ARMCHAIR

GRAPHENE SUPERLATTICES

1 In this chapter, we study third-order THz nonlinear response of metallic arm-

chair graphene nanoribbon superlattices in the presence of an elliptically-polarized

excitation field using time dependent perturbation theory. For a one-dimensional

Kronig-Penney potential of infinite length, the nonlinear response can be described

perturbatively by a low energy k ·p N-photon coupling model. Remarkably, as shown

by Burset et.al. [35], the energy dispersion of the metallic band in the direction paral-

lel to the superlattice wavevector is independent of the applied superlattice potential

while the energy dispersion in the direction perpendicular to the superlattice wavevec-

tor depends strongly on the superlattice parameters. As a result, we predict novel

behavior for the nonlinear response of single layer metallic acGNR superlattices to

an applied elliptically-polarized electric field. Our work shows that the superlattice

potential, periodicity, Fermi level, excitation field polarization state, and temperature

all play a significant role in the resulting THz nonlinear conductances.

7.1 Introduction

Graphene is a 2D honeycomb lattice arrangement of tightly packed carbon

atoms. The unique properties of the quasiparticles near the Dirac points are governed

by a massless Dirac Hamiltonian. The Dirac fermions near the Dirac points have very

1This chapter has been submitted for publication.
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interesting properties, such as linear band dispersion, traveling with a high isotropic

Fermi velocity and an easily tunable Fermi level, lead to the strong THz nonlinear

response in 2D graphene structures [6–8,17–21,52,65,68,69,73].

Graphene superlattices may be fabricated via a variety of methods [119–124].

Design of graphene superlattice structures permit tailoring the graphene band struc-

ture and transport properties [35,125,126], leading to novel features, e.g. the effective

group velocity parallel to the 1D cosine or Kronig-Penney (KP) potential can be dis-

torted [35, 125–128], new Dirac points and lines may emerge [35, 124–128], Landau

level splitting may occur [124], and finally group velocity modification due to a finite

superlattice potential [128] and ratchet effects [122] may occur.

In general, graphene nanoribbons (GNR) have two different types of edges:

armchair GNR (acGNR) and zigzag GNR (zzGNR). Theses two types of GNR show

distinct electronic properties near the Dirac points [39, 41, 42]. The linear and non-

linear response of GNR due to a variety of elliptically-polarized excitation fields were

investigated [9, 10, 75, 76, 81, 82, 114, 115]. Prior to the current work, only the non-

linear optical response of 2D graphene superlattices to a linearly-polarized excitation

field have been investigated [51, 129] and there has been no investigation of the THz

nonlinear response in metallic acGNR superlattice (mGNRsl) structures.

Most recently, thin (sub-20 µm) GNRs fabricated experimentally exhibit ultra

smooth edges (not dominated by defects), high mobility, and ballistic transport [4,22,

48,49], and as a result may be treated as quasi-1D quantum wires. Further, graphene

based nonlinear superlattice detectors are among the fastest detectors for excitation
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frequencies ranging from THz up through ultraviolet. They are suitable for detection

of intense sources and exhibit the attractive combination of sensitivity and speed up

to room temperature [130]. Thus it is natural to investigate the nonlinear response

of of thin mGNRsl structures to THz excitation fields.

In this chapterz, we describe new results on the nonlinear response of infinitely-

long intrinsic and extrinsic thin mGNRsl excited by a normally-incident, elliptically-

polarized THz electric field. We limit our work to superlattices with wavevectors

parallel to the longitudinal axis of the nanoribbon, as well as THz photon energies

and superlattice parameters that do not result in the creation of additional Dirac

points [35]. In this limit, the band structure for the lowest metallic subbands in thin

mGNRsl are independent of the superlattice parameters [35], which is quite different

than the anisotropic band structure in 2D single layer graphene superlattice. Most

significantly, we show that for the superlattice, Fermi level, polarization state and

temperature all play an important role in determine the THz nonlinear response in

infinitely-long mGNRsl.

7.2 Model

We consider mGNR with an applied 1D Kronig-Penney potential potential

V(y) = V (y+d), and V (y) = V0sgn(y−d/2)| for |y| < d. According to [35], the trans-

port near the Dirac point may be quantitatively described in the k ·p approximation

by the effective group velocity vx = λvF and vy = vF where:

λ = sinc(Ṽ ) = sinc [V0d/ (2~vF )] (7.1)
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However, when Ṽ > π, new Dirac points emerge in the energy spectrum and the k ·p

model is no longer quantitatively valid [35]. As a result, in this chapterz we focus on

the Ṽ < π regime.

Figure 7.1: Design limits imposed by requiring that Ṽ ≤ 3; a) relationship between

d and V0, and b) relationship between V0 and λ−1.

We begin with the unperturbed Hamiltonian for the mGNRsl in the form [35,41,42]:

H0 = ~
(
vg · k 0

0 vg · k′

)
(7.2)

with vg = vxσxx̂ + vyσyŷ, k(k′) = kn(−kn)x̂ + kyŷ, k(k′) =
(
k2n + k2y

)1/2
, and θn =

tan−1(kn/ky). The energy dispersion is ϵ = s~
[
v2yk

2
y + v2xk

2
n

]1/2
. With pg = vyky −

ivxkn, the wavefunction of mGNRsl is written:

ψn,s =
exp(ikyy)

(4LxLy)
1/2


exp (iknx) pg/|ϵ|
s k exp(iknx)

− exp [-i (knx)] pg/|ϵ|
s k exp(-iknx)

 (7.3)

We note that Eq. (7.3) reduces to the wavefunction for acGNR in the absence of

the superlattice potential (λ = 1). We consider excitation frequencies well below the

optical phonon energy in graphene (ω/2π 6 6.67 THz) and assume the contributions
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from the direct interband transition to the linear and nonlinear response are solely

from the lowest band kx,n = 0 for thin (Lx . 20 nm) mGNRsl. Fig. 7.1 illustrates

the design limits obtained by requiring that Ṽ 6 3, or equivalently 1 6 λ−1 6 20 for

Lx = 20a0/2 wide mGNRsl (mGNRsl20).

The THz elliptically-polarized pump field incident on the mGNRsl may be

generated by passing a THz ŷ-polarized electric harmonic field through a cascade of

a half-wave plate, with its fast axis at an angle ϕ with respect to the ŷ axis, and a

quarter-wave plate oriented with its principle axes parallel and perpendicular to the

Kronig-Penney potential. We assume the THz elliptically-polarized field is switched

on adiabatically at t0 = −∞. In the Coulomb gauge for a source-free region (∇φ = 0),

the THz elliptically-polarized field may be written in the Jones representation as

E = E0 [ix̂ sin(ϕ) + ŷ cos(ϕ)] exp(−iωt), giving rise to a magnetic vector potential

A = E/(iω). Following the N-photon coupling perturbation approach [10, 51, 52, 81]

and making the substitution k(k′) → k(k′)+qA/~, we obtain a time and polarization-

state dependent Hamiltonian H near the Dirac points of the mGNRsl. The perturbed

wavefunction is written:

Ψ(r, t;m) =
∞∑
l=0

ψ(m, l) exp[i
2mπ

Ly
y] exp[−i( ϵ

~
+ ωl)t] (7.4)

where m is the quantum number of ky, l is the harmonic order of the electric field,

and ψ(m, l) is a spinor of order (m, l). In mGNRsl, for kx,n = 0, the dispersion of

the energy spectrum is written ϵ = s~|ωy|. With ωy0 = 2πvy/Ly, ωy = mωy0 and

the superlattice response function f(ϕ, α, β, λ) = 2 cos(ϕ)
[
α cos2(ϕ) − λβ sin2(ϕ)

]
,

in the relaxation free approximation with no coupling to the spatial profile of the
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applied THz excitation field, the longitudinal Kerr and third-harmonic conductances

in infinitely-long mGNRsl become:

g
(3)
y (ω, ϕ, λ)

−g0ηηx
= f(ϕ, 1,−1, λ)N

(ω
2

)
+

1

2
f(ϕ, 1,−3, λ)N(ω) (7.5a)

g
(3)
y (3ω, ϕ, λ)

g0ηηx
=

1

24
f(ϕ, 6, 1, λ)N

(ω
2

)
− 1

6
f(ϕ, 3,−5, λ)N(ω)

+
1

8
f(ϕ, 2,−7, λ)N

(
3ω

2

)
(7.5b)

and the transverse third-order conductances are:

g
(3)
x (ω, ϕ, λ)

g0ηηx
=
λ

2
f(ϕ, 1, 1, λ)N(ω) (7.6a)

g
(3)
x (3ω, ϕ, λ)

−g0ηηx
=

λ

24
f(ϕ, 6, 5, λ)N

(ω
2

)
− λ

6
f(ϕ, 3,−1, λ)N(ω)

+
λ

8
f(ϕ, 2,−7, λ)N

(
3ω

2

)
(7.6b)

with the thermal factor defined as:

N(ωy) =
sinh

(
~|ωy|
kBT

)
cosh

(
EF

kBT

)
+ cosh

(
~|ωy|
kBT

) (7.7)

and with quantum conductance g0 = e2/(4~), Fermi level EF = ~Ω, gain factor

ηx = (gsgvvF ) / (ωLx), and coupling strength η = (e2E2
0v

2
F ) /(~2ω4). Finally, we note

that the even-order conductances are zero due to the symmetry inherent in mGNRsl.

124



www.manaraa.com

7.3 Results and Discussion

To simplify the discussion, we choose an applied field strength E0 = 10 kV/m.

Further, we use the relaxation free approximation for mGNRsl20 of infinite length

and we neglect the effects of the spatial profile of the applied field on the nonlinear

response [81]. From Eqs. (7.5) and (7.6), we see that illumination of an intrinsic,

infinitely-long mGNRsl by a THz harmonic electric field results in a nonlinear response

that is strongly dependent on the polarization state of the applied field.

Figure 7.2: Magnitude of the third-order conductances at f = ω/2π = 1 THz for

intrinsic mGNRsl20 for various values of λ as a function of the polarization ellipse

angle ϕ; a) longitudinal Kerr conductance at T = 0 K, b) longitudinal third-harmonic

conductance at T = 0 K, c) transverse Kerr conductance at T = 300 K, and d)

transverse third-harmonic conductance at T = 300 K. For all plots E0 = 10 kV/m.
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Fig. 7.2 illustrates the polarization dependence of the longitudinal and trans-

verse third-order nonlinear conductances at T = 0 K and 300 K for intrinsic infinitely-

long mGNRsl20 with varying λ. For the linearly polarized case, we have g
(3)
x (ω0, 0, λ) =

λg
(3)
x (ω0, 0, 1). On the other hand, due to the fact that for the lowest metallic band,

the energy dispersion ϵ = s~|ωy| is independent of the superlattice parameter λ and

has an effective group velocity vy = vF , the longitudinal third-order conductance

g
(3)
y (ω0, 0, λ) does not change from the non-superlattice result. In summary, due to

the effective group velocity scaling vx = λvF , g
(3)
x (ω0, 0, λ) scales with λ as discussed

above and is in agreement with the analysis of Ref. [35] for acGNR superlattices. For

a general elliptically-polarized field (ϕ ̸= 0◦, 90◦), we see that the longitudinal third-

order conductance g
(3)
y (ω0, ϕ, λ) depends on the superlattice parameter only through

the superlattice response function f(ϕ, α, β, λ), and the transverse third-order conduc-

tance g
(3)
x (ω0, ϕ, λ) depends on λ through both the coefficients multiplying each term

in the expression for the conductance as well as the superlattice response function

f(ϕ, α, β, λ).

Fig. 7.3 illustrates the dependence of the longitudinal and transverse third-

order conductances on temperature and superlattice parameter λ for the set of three

Fermi levels Ω/2π = 0.2 THz, 0.7 THz, and 1.2 THz. Generally, the lowest Fermi level

in this set allows single-, two-, and three-photon transitions at low temperature if

present in Eqs. (7.5) and (7.6), the intermediate Fermi level blocks the single-photon

transition at low temperature, and the high Fermi level blocks both single- and two-

photon transitions at low temperature. For the longitudinal Kerr conductance (Figs.
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Figure 7.3: Amplitude of the third-order conductances excited with a circularly-

polarized field as a function of temperature and superlattice parameter λ for vari-

ous values of the Fermi level; a-d) Ω/2π = 0.2 THz, e-h) Ω/2π = 0.7 THz, and i-l)

Ω/2π = 1.2 THz. Panels a), e) , and i) show the longitudinal Kerr conductance,

−g(3)y (ω, 45◦, λ); panels b), f), and j) show the longitudinal third-harmonic conduc-

tance, g
(3)
y (3ω, 45◦, λ); panels c), g), and k) show the transverse Kerr conductance,

g
(3)
x (ω, 45◦, λ); and panels d), h), and l) show the transverse third-harmonic conduc-

tance, −g(3)x (3ω, 45◦, λ). E0 = 10 kV/m and f = ω/2π = 1 THz for all plots.

7.3a, 7.3e and 7.3i), we note that for a fixed superlattice parameter λ, the peak

of the nonlinearity shifts to higher temperature as the Fermi level is increased and

that the nonlinearity decays with temperature as expected. For the longitudinal

third-harmonic nonlinearity, the single-photon term in Eq. (7.5b) is small relative
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to the two-photon term, and as a result there is not a significant change between

Figs. 7.3b and 7.3f. Blocking the two-photon term (Fig. 7.3j) eliminates the sign

change that is manifest at lower Fermi levels. Eq. (7.6a) contains only a two-photon

term and as a result, there are only minor differences between Figs. 7.3c and 7.3g.

Interestingly, blocking the two-photon term yields a zero conductivity for T = 0 K

and for λ = 1, and a nonzero conductivity for intermediate values (Fig. 7.3k). The

nonzero conductivity arises due to the fact that the two-photon transition is not

completely blocked at elevated temperatures. Finally, the behavior of the transverse

third-harmonic conductance (Figs. 7.3d, 7.3h and 7.3l) follows very closely that of

the longitudinal third-harmonic conductance.

In Fig. 7.4 we plot the third-order conductances as a function of excitation

frequency for two different values of the superlattice parameter λ with linearly and

circularly-polarized excitation fields. The longitudinal conductances illustrated in

Figs. 7.4a and 7.4b depend on λ solely through the superlattice response function

f(ϕ, α, β, λ). This suggests that direct experimental measurement of the superlat-

tice response function should be possible. Conversely, the strong dependence of the

transverse conductances on λ through both the superlattice response function and

the coefficients for each term in the conductance expressions is readily observed at

both T = 0 K and 300 K. Further, at room temperature, a sharp null in the the third-

harmonic conductances is observed, e.g. at approximately f = ω/2π = 2.4 THz for

the longitudinal conductance and at approximately f = ω/2π = 3.1 THz. This null is

a result of the destructive interference between the different terms in the expressions
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Figure 7.4: Magnitude of the third-order conductances for extrinsic mGNRsl20

(Ω/2π = 0.7 THz) as a function of excitation frequency f = ω/2π for various values

of polarization angle ϕ and superlattice parameter λ; a) longitudinal conductances at

T = 0 K, b) longitudinal conductances at T = 300 K, c) transverse conductances at

T = 0 K, and d) transverse conductances at T = 300 K. E0 = 10 kV/m for all plots.

for the conductances, Eqs. (7.5) and (7.6).

We study the temperature-dependence of this interference phenomenon in

more detail in Fig. 7.5. The location of the null increases in frequency as temperature

increases. This behavior results from the overall cancellation of the product of the

superlattice response function and the thermal factor with increasing temperature,
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and agrees with the discussion of Fig. 7.3. For excitation frequencies ω > 2Ω, there

is also a second zero at low temperature due to this overall cancellation that can be

seen in Fig. 7.5 as well.

Figure 7.5: Magnitude of the third-harmonic conductances for extrinsic mGNRsl20

(Ω/2π = 0.7 THz) as a function of temperature and the excitation frequency f =

ω/2π; a) log(|g(3)y (3ω, 45◦, 0.1)|/g0), and b) log(|g(3)x (3ω, 45◦, 0.1)|/g0). For all plots,

E0 = 10 kV/m.

7.4 Conclusions

In conclusion, we have studied the third-order nonlinear conductance in metal-

lic armchair graphene nanoribbon superlattices using time-dependent perturbation

theory and a simple k ·p model for an elliptically-polarized excitation field at normal

incidence. Our results predict several novel features. The most important of these

is that by varying the superlattice parameter λ, it is possible to tune the sign and
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magnitude of the nonlinear response. Secondly, through experimental measurement

of the longitudinal third-order conductances, it should be possible to directly evalu-

ate the superlattice response function. Finally, by varying λ through its dependence

on the applied superlattice potential V0, it is possible to switch the transverse Kerr

conductance between ON and OFF states over a wide range of temperatures.

Active control of THz polarization spectroscopy is vital for optical material

characterization and various applications in communication technology. Unlike con-

ventional semiconductors, graphene nanoribbon superlattices can be easily tuned elec-

trically in the THz range. Therefore, THz spectroscopy using graphene nanoribbons

could lead to ultrathin THz polarization modulators.
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CHAPTER 8
CONCLUSIONS AND OUTLOOK

8.1 Conclusions

In this thesis, we have systematically studied the terahertz nonlinear optical

response of armchair graphene nanoribbons and several sister structures. These struc-

tures can generate strong nonlinear currents when optically stimulated by moderately-

strong terahertz fields and exhibit nonlinearities unmatched by any other conventional

semiconductor materials. Additionally, a model based on the k · p time dependent

perturbation theory is developed. Unlike the tight-binding and other sophisticated

methods that require much more computational effort, the k · p model is simple,

effective, and requires less computation time.

In the discussion of the results in this thesis, we demonstrated there are many

ways to tune the terahertz nonlinear response of metallic armchair graphene nanorib-

bon based structures. Such easy tunability can be achieved via the change of Fermi

level, the size of the metallic graphene nanoribbon structures, the spatial profile of the

applied terahertz radiation field, the polarization of the applied terahertz radiation

field, engineering of the band gap, and the application of a periodic superlattice po-

tential. These findings mean that thin metallic graphene nanoribbon based structures

may enable novel nonlinear optical, electronic, and photonic devices working in the

terahertz spectral range, with extremely high speed, strong response, low required

external excitation field strength, and a much more compact size than conventional
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semiconductor, as well as 2D single layer graphene based structures.

High quality thin armchair graphene nanoribbons were only first reported in

2015, but until now there has been no theoretical investigation into the terahertz

nonlinear response of these nanoribbons. The versatility of the tunability shown

in this thesis regarding the strong terahertz nonlinear optical response of metal-

lic graphene nanoribbons, in connection with the state of art of the thin armchair

graphene nanoribbon synthesis, provide new advances in fundamental understanding

of these nanoribbons, and will set the stage for the development of nonlinear terahertz

armchair nanoribbon opto-electronic and photonic technology. All of the work shown

in this thesis fits well in the timeline for the next generation of terahertz graphene

electronics (see Fig. 8.1).

8.2 Outlook

8.2.1 Luttinger Liquid

Quasi 1D structures exhibit fascinating quantum phenomena, the Luttinger

Liquid state, which is a low-dimensional state characterized by strong particle-particle

interactions. The behaviour of the metallic states of electrons in 2D and 3D are like

weakly interacting fermions, and can be described by a Fermi liquid, in which the

excitations carry a charge e, and a spin 1/2. In 1D, charge carriers no longer behave

like a Fermi liquid. Instead, spin and charge excitations behave like bosonic particles

and propagate at different velocities [131].

The Luttinger Liquid (LL) model is appropriate to describe transport proper-
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Figure 8.1: Timeline for high frequency (including THz) graphene electronics. This

figure is obtained from [1].
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ties of quasi 1D system with electron-electron interactions. The LL system has two

types. One is the chiral LL: its right and left moving branches are spatially sepa-

rated [132], such as carbon nanotubes [133]. The other LL is the non-chiral type

whose right and left movers interact in the same channel [134], such as a narrow

quantum wire formed in conventional semiconductor heterostructures.

Edge states in graphene nanoribbon are predicted to be a LL [6]. High quality

nanoribbons should have 1D square root singularities in their density of states [6]. In

the LL model, a quantum capacitance and quantum inductance can be defined for the

Luttinger wire [135]. This implies that the AC transport behaviour of the Luttinger

wire can be converted to a classical transmission line circuit model. Furthermore,

Burke has developed a transmission line model for the 1D spinless electron system

of single wall carbon nanotube (SWCNT) [136]. Naeemi and Meindl have proposed

a linear circuit model for graphene nanoribbons [137]. Imambekov has developed

a universal nonlinear LL theory [138] which addresses the nonlinear part of the LL

model. In his theory, he shows that one needs to take the nonlinearity of the generic

spectrum into consideration, and that the nonlinearity leads to a qualitative change

in the spectral function.

As a result, it is essential to investigate the modified nonlinear LL model

of metallic acGNR, find the nonlinear conductance correction terms (the equivalent

quantum conductance and inductance), and propose an effective nonlinear trans-

mission line model. A nonlinear circuit model is crucial to further development of

graphene nanoribbon integrated circuits, as that would make it easier for engineers to
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design various graphene nanoribbon based integrated circuits with standard circuit

technique.

8.2.2 Effect of symmetry breaking

Bandgap opening, the presense of a magnetic field, elliptically polarized radi-

ation, oblique incidence et. al. break the symmetry of the graphene, and thus lead

to second harmonic generation in 2D single layer graphene [8]. It will be crucial to

investigate the effect of symmetry breaking in the second order nonlinear response.

Effects, such as the presence of multiple quantum well potential, and the ap-

plication of magnetic field et. al., all change the properties of the spin and valley of

graphene nanoribbons, and they show quantum qubits [12–15]. The interband optical

response of metallic armchair graphene nanoribon structures calculated in this thesis

is indistinguishable from K and K′ valley. However, in the presence of a staggered

magnetice field, which is positive near the center of each hexagon and negative near

the edges, it introduces a complex phase shift eiϕ for the next nearest neighbor hop-

ping t1. As a result, the band gap opening will be Eg/2∓ 3
√

3t1 sin(ϕ) for the K(K′)

valley [30], thus introducing asymmetries of the valley. The chiral vector potential

formed [31] via kink, twisting et. al. [31] can also introduce asymmetries in the band

gap opening as well. It will be interesting to see if a nonlinear valley-current can be

generated in these configurations.
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8.2.3 Fully quantum model

The model discussed in this thesis is not a complete quantum description

of the problem. The consideration of intraband transition, heavy doping, higher

frequencies, various scattering mechanism, defects are crucial to a fully quantum

model of the nonlinear response of armchair graphene nanoribbons. Since a complete

quantum description of the nonlinear response of 2D single layer graphene has not

been developed due to the complexity of the problem [68]. It may be difficult to

develop a fully quantum description of the nonlinear terahertz response of armchair

graphene nanoribbons as well. However, further development of the current model

adopted in this thesis, based on combinations of several independent quantum models

of 2D single layer graphene [34,52,68,71,73], may lead to a fully quantum description

of the terahertz nonlinear response of armchair graphene nanoribbons.

8.2.4 Characterization of terahertz nonlinear response of stacked armchair

graphene nanoribbons

Until now, there’s no available low energy k · p models for bilayer and multi-

layer graphene nanoribbons. Bilayer and multilayer graphene exhibit a different non-

linear optical response than the single layer graphene [8], and as a result, it will be

crucial to study terahertz nonlinearities in bilayer and multilayer graphene nanorib-

bons.

Similarly to bilayer graphene nanoribbons, it will be interesting to study the

spatially stacked graphene nanoribbons. Due to the interplay between intralayer
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and interlayer coupling of these stacked multiple graphene nanoribbons systems, pre-

diction shows such stacking could have a major influence on both their electronic

structure and magnetic states [131], and may offer vast opportunities for device ap-

plications of structures formed by stacked nanoribbons [1].

Calculations of the linear plasmon dispersion in single as well as spatially

stacked double metallic graphene nanoribbon were performed [39, 40, 139, 140]. Re-

cently, studies show that nonlinear surface plasmon polaritons in the graphene layer

exhibit optical bistability [141]. Furthermore, coherent nonlinear Rabi oscillations

and Rashba spin-orbit interactions may be useful barometers for studying the low-

energy electronic structure of bilayer and multi-layer graphene systems [142, 143]. It

would be useful to characterize the terahertz nonlinear response of stacked graphene

nanoribbons.

8.2.5 Energy conversion and storage applications of stacked armchair graphene

nanoribbons

Chemically functionalized stacked armchair graphene nanoribbons can im-

prove storage and diffusion of ionic species and electric charge in batteries and su-

percapacitors, thus enabling the realization of ultrathin-film photovoltaic devices or

systems for reliable and environmentally friendly production of energy-storage sys-

tems [1, 144].
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APPENDIX A
VECTOR POTENTIAL DERIVATION

1 In the Coulomb gauge, for a constant scalar potential (∇φ = 0), the relation-

ship between the vector potential and the electric field is E(t) = −∂A(t)/∂t. Thus,

for an electric field E(t) = E0e
−iωt that is turned on at time t0, the vector potential

is written:

A(t) = −
∫ t

t0

E(t1) dt1 = −E0

∫ t

t0

e−iωt1 dt1 (A.1)

Considering a time-harmonic field turned on at t0 → −∞, we write the integral in

Eq. (A.1):

I =

∫ t

−∞
e−iωt1 dt1

=

∫ 0

−∞
e−iωt1 dt1 +

∫ t

0

e−iωt1 dt1

=I1 + I2

(A.2)

In order to evaluate the integral I1, we introduce an infinitesimally small positive

parameter τ , which corresponds to the field turning on at t0 → −∞ adiabatically

[53,54]. With t′ = −t1:

I1 = lim
τ→0

∫ 0

−∞
e(τ−iω)t1 dt1

= lim
τ→0

∫ ∞

0

e−(τ−iω)t′ dt′
(A.3)

We have the following formula [145]. For Re[p] > 0,

∫ ∞

0

e−px dx =
1

p
(A.4)

1This Appendix A is based on the Appendix A of Phy. Rev. B. 93, 235430 (2016) [10]
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With p = τ − iω, the condition Re [τ − iω] = τ > 0 is satisfied. So Eq. (A.4) is:

I1 = lim
τ→0

∫ ∞

0

e−(τ−iω)t′ dt′

= lim
τ→0

∫ ∞

0

e−px dx

= lim
τ→0

1

p
= lim

τ→0

1

τ − iω

=
1

−iω

(A.5)

Evaluating the integral I2, we obtain:

I2 =

∫ t

0

e−iωt dt1

=
e−iωt − 1

−iω

(A.6)

The total integral I is obtained by summing I1 and I2:

I = I1 + I2 =
1

−iω
+
e−iωt − 1

−iω
=
e−iωt

−iω
(A.7)

and the vector potential in the Coulomb gauge for a time-harmonic electric field that

turns on adiabatically at t0 → −∞ becomes:

A(t) = −E0I =
−E0e

−iωt

−iω
=
E(t)

iω
(A.8)

Similarly, for the electric field of the form E1(t) = E1e
iωt turned on adiabatically at

t0 → −∞ under the Coulomb gauge, the magnetic vector potential is

A1(t) = −
∫ t

t0

E1(t1) dt1 = −E1

∫ t

t0

eiωt1 dt1 = −E1
eiωt

iω
= −E1(t)

iω
(A.9)

And we recover the magnetic vector potential used in Ref. [32, 51,52,55,57].
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APPENDIX B
DERIVATION OF THE THIRD ORDER CONDUCTANCE IN 2D

SINGLE LAYER GRAPHENE

1 A.R. Wright et.al. [52], proposed a model to analyze the nonlinear response

of two-dimensional single-layer graphene (2D SLG) in the THz regime. Similar results

were also reviewed by Ang et.al [146] where a correction was made to the expression

for the third-order third-harmonic nonlinear conductance (see Ref. [52, eq. 9] and

Ref. [55, eq. 71]). We have used this model as a starting point in our study of the

THz nonlinearity in metallic graphene nanoribbons. One of our goals was to follow

the model proposed in that paper and verify the 2D SLG result so that we could

compare it with our nanoribbon results.

In the following, we outline our independent replication of the calculation as it

appeared in Ref. [52]. We find errors in Ref. [52,55] in the expressions for third-order

Kerr conductance.

We begin with the model of Ref. [52] for intrinsic 2D SLG that includes an

applied linearly-polarized electric field in the x direction, E(t) = x̂Exe
iωt. The in-

teraction Hamiltonian for such a system is H = vFσ · (p + qA). From the equation

E = -∂A
∂t

= −iωA = x̂Exe
iωt, and q = −e, we get qA = x̂ eEx

iω
eiωt. So the interaction

Hamiltonian can be written as:

H = vF

(
0 px − ipy + eEx

iω
eiωt

px + ipy + eEx

iω
eiωt 0

)
(B.1)

1This Appendix B is based on the Appendix B of Phy. Rev. B. 93, 235430 (2016) [10]
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The wavefunction ψ(r, t) solution to Eq. 1 can be expressed in a Fourier series form:

ψ(r, t) =
∞∑
n=0

ϕn(p)ei(kxx+kyy)einωte−iϵt/~ (B.2)

where ϵ = svFp, px = p cos(θ), py = p sin(θ) and tan(θ) = py/px, with s = ±1

the band index. The total energy ϵ − n~ω with applied field x̂Exe
iωt implies that

the carriers lose energy n~ω. This describes the process where an electron in the

conduction band loses energy n~ω and makes an interband transition to the valence

band. So we choose s = 1 for this case. As a result, the spinor ϕn(p) can be expressed

as ϕn(p) = [an(p, θ), bn(p, θ)]T , and we rewrite the wavefunction in the following form:

ψ(r, t) =
∞∑
n=0

[
an(p, θ)
bn(p, θ)

]
eip[cos(θ)x+sin(θ)y]/~einωte−ivF pt/~ (B.3)

The wavefunction ψ(r, t) satisfies the Schrödinger equation Hψ(r, t) = i~∂ψ(r,t)
∂t

. After

some algebra and using the orthogonal properties of the basis sets {eiωt}, we arrive

at a set of recursion relations, which give the coupling between the n− 1 and n state:

(vFp− n~ω) an = vFp [cos(θ) − i sin(θ)] bn +
eExvF
iω

bn−1

(vFp− n~ω) bn = vFp [cos(θ) + i sin(θ)] an +
eExvF
iω

an−1

(B.4)

The intial condition

(
a0
b0

)
is the initial state of the electron in the conduction band

without the applied electric field, or n = 0:

(
ϕ0(p) = a0

b0

)
=

1√
2

(
1
eiθ

)
(B.5)

and the first four spinors obtained from the recursion relations are the following:
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a0(p, θ) =
1√
2

(B.6)

b0(p, θ) =
eiθ√

2
(B.7)

a1(p, θ) =
ieExvF [(2pvF − ~ω) cos(θ) − i~ω sin(θ)]√

2~ω2(2pvF − ~ω)
(B.8)

b1(p, θ) =
ieExvF

[
(1 + e2iθ)pvF − ~ω

]
√

2~ω2(2pvF − ~ω)
(B.9)

a2(p, θ) =
e2E2

xv
2
F [−(pvF − ~ω)(pvF − ~ω + pvF cos(2θ)) + ipvF~ω sin(2θ)]

2
√

2~2ω4(2pvF − ~ω)(pvF − ~ω)
(B.10)

b2(p, θ) =
e2E2

xv
2
F e

−iθ [−e4iθp2v2F − 2e2iθ(pvF − ~ω)2 − pvF (pvF − 2~ω)
]

4
√

2~2ω4(2pvF − ~ω)(pvF − ~ω)
(B.11)

a3(p, θ) = − ie3E3
xv

3
F e

−3iθ[(1 + e2iθ)3p3v3F − 3e2iθ(3 + 4e2iθ + e4iθ)p2v2F~ω]

12
√

2~3ω6(2pvF − ~ω)(pvF − ~ω)(2pvF − 3~ω)
(B.12)

− ie3E3
xv

3
F e

−3iθ[2e2iθ(4 + 7e2iθ)pvF~2ω2 − 6e4iθ~3ω3]

12
√

2~3ω6(2pvF − ~ω)(pvF − ~ω)(2pvF − 3~ω)

b3(p, θ) = − ie3E3
xv

3
F e

−2iθ[(1 + e2iθ)3p3v3F − 3(1 + 4e2iθ + 3e4iθ)p2v2F~ω]

12
√

2~3ω6(2pvF − ~ω)(pvF − ~ω)(2pvF − 3~ω)
(B.13)

− ie3E3
xv

3
F e

−2iθ[2e2iθ(7 + 4e2iθ)pvF~2ω2 − 6e2iθ~3ω3]

12
√

2~3ω6(2pvF − ~ω)(pvF − ~ω)(2pvF − 3~ω)

By introducing ω = ω + iΓ, where Γ → 0 in the first order poles of the denominator

in the spinor, we arrive at:

a0(p, θ,Γ) =
1√
2

(B.14)

b0(p, θ,Γ) =
eiθ√

2
(B.15)

a1(p, θ,Γ) =
ieExvF [(2pvF − ~ω) cos(θ) − i~ω sin(θ)]√

2~ω2(2pvF − ~(ω + iΓ))
(B.16)

b1(p, θ,Γ) =
ieExvF

[
(1 + e2iθ)pvF − ~ω

]
√

2~ω2(2pvF − ~(ω + iΓ))
(B.17)

a2(p, θ,Γ) =
e2E2

xv
2
F [−(pvF − ~ω)(pvF − ~ω + pvF cos(2θ)) + ipvF~ω sin(2θ)]

2
√

2~2ω4(2pvF − ~(ω + iΓ))(pvF − ~(ω + iΓ))

(B.18)
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b2(p, θ,Γ) =
e2E2

xv
2
F e

−iθ [−e4iθp2v2F − 2e2iθ(pvF − ~ω)2 − pvF (pvF − 2~ω)
]

4
√

2~2ω4(2pvF − ~(ω + iΓ))(pvF − ~(ω + iΓ))
(B.19)

a3(p, θ,Γ) = − ie3E3
xv

3
F e

−3iθ[(1 + e2iθ)3p3v3F − 3e2iθ(3 + 4e2iθ + e4iθ)p2v2F~ω]

12
√

2~3ω6(2pvF − ~(ω + iΓ))(pvF − ~(ω + iΓ))(2pvF − 3~(ω + iΓ))

− ie3E3
xv

3
F e

−3iθ[2e2iθ(4 + 7e2iθ)pvF~2ω2 − 6e4iθ~3ω3]

12
√

2~3ω6(2pvF − ~(ω + iΓ))(pvF − ~(ω + iΓ))(2pvF − 3~(ω + iΓ))

(B.20)

b3(p, θ,Γ) = − ie3E3
xv

3
F e

−2iθ[(1 + e2iθ)3p3v3F − 3(1 + 4e2iθ + 3e4iθ)p2v2F~ω]

12
√

2~3ω6(2pvF − ~(ω + iΓ))(pvF − ~(ω + iΓ))(2pvF − 3~(ω + iΓ))

− ie3E3
xv

3
F e

−2iθ[2e2iθ(7 + 4e2iθ)pvF~2ω2 − 6e2iθ~3ω3]

12
√

2~3ω6(2pvF − ~(ω + iΓ))(pvF − ~(ω + iΓ))(2pvF − 3~(ω + iΓ))

(B.21)

The current operator for the x component of the (n+m)th order current is

jn+mx ((n−m)ω) = −evFϕ†
m(p, θ)σxϕn(p, θ) = −evF [anb

∗
m + a∗mbn] (B.22)

The spinor is a function of p, θ and Γ. Thus the total current density is written:

Jn−mx = lim
Γ→0

−gsgvevF
(2π~)2

∫ 2π

0

dθ

∫ ∞

0

ℜ{[anb
∗
m + a∗mbn]N(p)p} dp (B.23)

Since
∫ 2π

0
cos(2θ)dθ =

∫ 2π

0
sin(2θ)dθ =

∫ 2π

0
cos(4θ)dθ =

∫ 2π

0
sin(4θ)dθ = 0,

Jx3 (ω) = lim
Γ→0

gsgv
(2π~)2

g0η

∫ 2π

0

dθ

∫ ∞

0

dp (B.24a)

×ℜ
{
i

−v2F (3p3v3F − 8~p2v2F~ω + 6pvF~2ω2 − 2~3ω3)N(p)p

ω2[2pvF − ~(ω + iΓ)][2pvF − ~(ω − iΓ)][pvF − ~(ω + iΓ)]

}
Jx3 (3ω) = lim

Γ→0

gsgv
(2π~)2

g0η

∫ 2π

0

dθ

∫ ∞

0

dp (B.24b)

×ℜ
{
i

v2F (3p3v3F − 12~p2v2F~ω + 14pvF~2ω2 − 6~3ω3)N(p)p

3ω2[2pvF − ~(ω + iΓ)][pvF − ~(ω + iΓ)][2pvF − 3~(ω + iΓ)]

}
with gs, gv = 2, g0 = e2

4~ , η =
e2E2

xv
2
F

~2ω4 , and N(p) = tanh( pvF
2kBT

). In these expressions,

the integrands are of the form:
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i1(x) = f1(x)ℜ
[
i

1

(2x− x0 − iΓ)(2x− x0 + iΓ)(x− x0 − iΓ)

]
(B.25)

i3(x) = f3(x)ℜ
[
i

1

(2x− x0 − iΓ)(x− x0 − iΓ)(2x− 3x0 − i3Γ)

]
(B.26)

for the Kerr and third-order currents respectively, with f1(x), f3(x), x0, Γ real. the

integrands for the third order conductances become:

i1(x) =f1(x)
π

x (3x− 2x0)

[
1

π

Γ

(2x− x0)2 + Γ2
− 1

π

Γ

(x− x0)2 + Γ2

]
(B.27a)

i3(x) =f3(x)
π

x2

[
−1

4

1

π

Γ

(2x− x0)2 + Γ2
+

1

π

Γ

(x− x0)2 + Γ2
− 9

4

1

π

3Γ

(2x− 3x0)2 + 9Γ2

]
(B.27b)

As a result, the expressions for the current density in Eq. (B.24) above may be

expanded as a set of integrals of the form:

Z1 = lim
Γ→0

∫ b

a

ℜ
[

iz(x)

x− x0 ∓ iΓ

]
dx = lim

Γ→0

∫ b

a

ℜ [z1(x, x0,Γ)] dx (B.28)

with z(x), x, x0, Γ > 0 real. Using the property:

lim
Γ→0

1

π

Γ

(x− x0)2 + Γ2
= δ(x− x0) (B.29)

we arrive at Z1 = πf(x0). Several example problems involving this type of kernel

may be found in Refs. [147–150]. So the problem reduces to the evaluations of the

following:

lim
Γ→0

~Γ

4p2v2F − 4pvF~ω + ~2ω2 + ~2Γ2
= lim

~Γ→0

~Γ

(2pvF − ~ω)2 + (~Γ)2

=πδ(2pvF − ~ω)

=
π

2vF
δ(p− ~ω

2vF
)

145



www.manaraa.com

lim
Γ→0

~Γ

p2v2F − 2pvF~ω + ~2ω2 + ~2Γ2
= lim

~Γ→0

~Γ

(pvF − ~ω)2 + (~Γ)2

=πδ(pvF − ~ω)

=
π

vF
δ(p− ~ω

vF
)

lim
Γ→0

~Γ

4p2v2F − 12pvF~ω + 9~2ω2 + 9~2Γ2
= lim

~Γ→0

1

3

3~Γ

(2pvF − 3~ω)2 + (3~Γ)2

=
π

3
δ(2pvF − 3~ω)

=
π

6vF
δ(p− 3~ω

2vF
)

Alternatively, we may use the Cauchy Principal Value theorem to solve this problem.

Separating the real and imaginary parts of the integrand z1(x, x0,Γ), we obtain:

ℜ [z1(x, x0,Γ)] = ∓π 1

π

Γ

(x− x0)2 + Γ2
z(x) (B.30)

ℑ [z1(x, x0,Γ)] =
1

(x− x0) + Γ2/ (x− x0)
z(x) (B.31)

The Sokhotsky-Plemelj theorem on the real interval [a, b] states [151]:

lim
Γ→0

∫ b

a

g(x)

x− x0 ∓ iΓ
dx = P

∫ b

a

g(x)

x− x0
dx± iπg(x0) (B.32)

where P
∫ b
a
g(x)dx denotes the Cauchy principal integral of g(x). For g(x) = iz(x)

with z(x) real, the real and imaginary parts become:

ℜ
[

lim
Γ→0

∫ b

a

iz(x)

x− x0 ∓ iΓ
dx

]
= ∓πz(x0) (B.33)

ℑ
[

lim
Γ→0

∫ b

a

iz(x)

x− x0 ∓ iΓ
dx

]
= P

∫ b

a

z(x)

x− x0
dx (B.34)

which is the same result as in Eq. (B.29).

An analysis of the interband transition using the Kubo formula has appeared

in Ref. [77]. Eq. (A1) of that reference further confirms our result for 2D SLG. Based
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on the above analysis, in the limit as Γ → 0, the integrands in Eq. (B.27) reduce to:

lim
Γ→0

i1(x) =
πf1(x)

x(3x− 2x0)

[
δ(x− x0

2
)

2
− δ(x− x0)

]
= −πf1(x)

x20

[
2δ(x− x0

2
) + δ(x− x0)

]
(B.35)

lim
Γ→0

i3(x) =
πf3(x)

x2

[
−1

4

δ(x− x0
2

)

2
+ δ(x− x0) −

9

4

δ(x− 3x0
2

)

2

]
(B.36)

and the integrals reduce to:

I1 = − π

x20
[2f1(

x0
2

) + f1(x0)] (B.37)

I3 = − π

2x20

[
f3(

x0
2

) − 2f3(x0) + f3(
3x0
2

)

]
(B.38)

The total third-order nonlinear current densities are:

J3
x(ω) = −g0η

[
5

4
N(

ω

2
) + 2N(ω)

]
(B.39)

J3
x(3ω) = g0η

[
13

48
N(

ω

2
) − 2

3
N(ω) +

45

48
N(

3ω

2
)

]
(B.40)

resulting in the Kerr conductance:

g(3)xx (ω)2D = −g0
e2E2

0v
2
F

~2ω4

[
5

4
tanh(

~ω
4kBT

) + 2 tanh(
~ω

2kBT
)

]
(B.41)

and the third-harmonic conductance:

g(3)xx (3ω)2D = g0
e2E2

0v
2
F

~2ω4

[
13

48
tanh(

~ω
4kBT

) − 2

3
tanh(

~ω
2kBT

) +
45

48
tanh(

3~ω
4kBT

)

]
(B.42)

Similarly, for a ŷ-polarized electric field of the form ŷE0e
iωt, we arrive at an identical

result for the third-order Kerr current in the ŷ direction, or equivalently g
(3)
xx (ω) =

g
(3)
yy (ω) and g

(3)
xx (3ω) = g

(3)
yy (3ω) for 2D SLG.

From Eq. (B.41), we see that J3
x(ω) is a superposition of 2 processes:
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1. for electrons with initial energy ϵ = −~ω/2, the absorption-emission-absorption

of a photon with energy ~ω

2. for electrons with initial energy ϵ = −~ω, the absorption-absorption-emission

of a photon with energy ~ω.

The results from Eqs. 70, 71 of Ref. [55] are:

g3x(ω) = −g0
e2E2

xv
2
F

~2ω4

[
2 tanh(

~ω
2kBT

)

]
(B.43)

g3x(3ω) = g0
e2E2

xv
2
F

~2ω4

[
13

48
tanh(

~ω
4kBT

) − 2

3
tanh(

~ω
2kBT

) +
45

48
tanh(

3~ω
4kBT

)

]
(B.44)

The difference between Eq. (B.41) and Eq. (B.43) is due to the presence of the

5
8

tanh( ~ω
4kBT

) term in Eq. B.41.

From our derivation, it is clear that there should be an ϵ = ~ω/2 term in the

J3
x(ω) nonlinear process. Our disagreement with Refs. [52,55] may stem from the fact

that they did not correctly calculate the integrand in Eq. (B.24a). They may have

assumed that:

i1(x) = − f1(x)
Γ

[(2x− x0)2 + Γ2] [(x− x0)2 + Γ2]

= − f1(x)

[
1

(2x− x0)2 + Γ2

]
·
[

Γ

(x− x0)2 + Γ2

]
and in the limit as Γ → 0 (with a possible erroneously assumption Γ2 = 0 in the

denominator of the first factor):

lim
Γ→0

i1(x) = −πf1(x)
1

(2x− x0)2
δ(x− x0)

If this was their approach, they have ignored the contribution to the integral from

the 2nd order pole at x = x0/2. That this approach is problematic can be seen by
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considering the following limit:

i1(x) = − f1(x)
Γ

[(x− x0)2 + Γ2] [(2x− x0)2 + Γ2]

= − f1(x)

[
Γ

(2x− x0)2 + Γ2

]
·
[

1

(x− x0)2 + Γ2

]
and in the limit as Γ → 0 (with a possible erroneously assumption Γ2 = 0 in the

denominator of the second factor):

lim
Γ→0

i1(x) = − πf1(x)
1

(x− x0)2
δ(2x− x0)

= − πf1(x)

2

1

(x− x0)2
δ(x− x0

2
)

Although the starting point is the same, in this case a completely different result is

obtained. So we argue that both δ(x − x0/2) and δ(x − x0) terms should appear in

the limΓ→0 i1(x) expression, as we have established with our calculation.

To further amplify our point that there are two terms in the expression for the

third-order Kerr nonlinear conductance, we note that Eq. 33 may also be written as:

i1(x) = f1(x)ℜ
[
i

1

(2x− x0 − iΓ)(2x− x0 + iΓ)(x− x0 − iΓ)

]
= −f1(x)

[
1

(2x− x0)2 + Γ2

] [
Γ

(x− x0)2 + Γ2

]
= −f1(x)Γ

4

[
1

(x− a1x0)2 + (a1Γ)2

] [
1

(x− a2x0)2 + (a2Γ)2

] (B.45)

with a1 = 1/2, a2 = 1. Eq. (B.45) is symmetric in (a1, a2), and therefore the integral

I1 must also be symmetric in (a1, a2). Thus, both ω/2 and ω terms must appear in

the expression for the Kerr conductance, Eq. (B.41).

A comparison of Eqs. (B.41) and (B.43) for intrinsic 2D SLG with E0 =

10 kV/m at T = 0 K and 300 K is plotted in Fig. B.1. This shows that while small,

the correction due to the ω/2 resonant term is certainly not negligible.
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Figure B.1: Comparison of the third-order nonlinear conductance of for intrinsic 2D

SLG from Ref. [10, eq. (23-24)] (Eqs. (B.41) and (B.43) in this thesis) at T = 0 K and

300 K. The field strength used in all calculations is E0 = 10 kV/m and the excitation

frequency f = ω/(2π). This figure is obtained from [10].

In conclusion, we have replicated the calculation reported in Ref. [52, 55] for

the third-order Kerr and third-harmonic current densities of 2D SLG. We find that the

Ref. [52,55] result for the Kerr current density omits a contribution to the total current

density from the resonance at ϵ = ±~ω/2. We also identify possible mechanisms by

which these errors came to be in Ref. [52, 55].
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